dc.contributor.author | Gong, Maogang | |
dc.contributor.author | Shastry, Tejas A. | |
dc.contributor.author | Xie, Yu | |
dc.contributor.author | Bernardi, Marco | |
dc.contributor.author | Jasion, Daniel | |
dc.contributor.author | Luck, Kyle A. | |
dc.contributor.author | Marks, Tobin J. | |
dc.contributor.author | Grossman, Jeffrey C. | |
dc.contributor.author | Ren, Shenqiang | |
dc.contributor.author | Hersam, Mark C. | |
dc.date.accessioned | 2016-03-30T17:08:11Z | |
dc.date.available | 2016-03-30T17:08:11Z | |
dc.date.issued | 2014-08 | |
dc.date.submitted | 2014-06 | |
dc.identifier.issn | 1530-6984 | |
dc.identifier.issn | 1530-6992 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/101937 | |
dc.description.abstract | Single-walled carbon nanotubes (SWCNTs) have highly desirable attributes for solution-processable thin-film photovoltaics (TFPVs), such as broadband absorption, high carrier mobility, and environmental stability. However, previous TFPVs incorporating photoactive SWCNTs have utilized architectures that have limited current, voltage, and ultimately power conversion efficiency (PCE). Here, we report a solar cell geometry that maximizes photocurrent using polychiral SWCNTs while retaining high photovoltage, leading to record-high efficiency SWCNT–fullerene solar cells with average NREL certified and champion PCEs of 2.5% and 3.1%, respectively. Moreover, these cells show significant absorption in the near-infrared portion of the solar spectrum that is currently inaccessible by many leading TFPV technologies. | en_US |
dc.description.sponsorship | MITEI Seed Fund Program | en_US |
dc.language.iso | en_US | |
dc.publisher | American Chemical Society (ACS) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1021/nl5027452 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | MIT web domain | en_US |
dc.title | Polychiral Semiconducting Carbon Nanotube–Fullerene Solar Cells | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Gong, Maogang, Tejas A. Shastry, Yu Xie, Marco Bernardi, Daniel Jasion, Kyle A. Luck, Tobin J. Marks, Jeffrey C. Grossman, Shenqiang Ren, and Mark C. Hersam. “Polychiral Semiconducting Carbon Nanotube–Fullerene Solar Cells.” Nano Lett. 14, no. 9 (September 10, 2014): 5308–5314. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Materials Science and Engineering | en_US |
dc.contributor.mitauthor | Bernardi, Marco | en_US |
dc.contributor.mitauthor | Grossman, Jeffrey C. | en_US |
dc.relation.journal | Nano Letters | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Gong, Maogang; Shastry, Tejas A.; Xie, Yu; Bernardi, Marco; Jasion, Daniel; Luck, Kyle A.; Marks, Tobin J.; Grossman, Jeffrey C.; Ren, Shenqiang; Hersam, Mark C. | en_US |
dc.identifier.orcid | https://orcid.org/0000-0003-1281-2359 | |
mit.license | PUBLISHER_POLICY | en_US |