MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Constructing Multifunctional Virus-Templated Nanoporous Composites for Thin Film Solar Cells: Contributions of Morphology and Optics to Photocurrent Generation

Author(s)
Dorval Courchesne, Noémie-Manuelle; Klug, Matthew Thomas; Huang, Kevin Joon-Ming; Weidman, Mark Clayton; Cantu, Victor J.; Kooi, Steven E.; Yun, Dong Soo; Tisdale, William; Fang, Nicholas X.; Belcher, Angela M.; Hammond, Paula T.; Chen, Po-Yen; ... Show more Show less
Thumbnail
DownloadHammond_Constructing Multifunctional.pdf (4.796Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Biotemplates, such as the high aspect ratio M13 bacteriophage, can be used to nucleate noble metal nanoparticles and photoactive materials such as metal oxides, as well as organize them into continuous structures. Such attributes make them attractive scaffolds for solar applications requiring precise organization at the nanoscale. For instance, thin film solar cells benefit from nanostructured morphologies that aid light absorption and carrier transport. Here, we present a biotemplating strategy for assembling nanostructured thin film solar cells that enhance the generated photocurrent through two features: (1) a nanoporous and continuous M13 bacteriophage-templated titania network that improves charge collection and (2) the incorporation of metal nanoparticles within the active layer of the device to improve light harvesting. We demonstrate our ability to construct virus-templated solar cells by applying this strategy to depleted titania–lead sulfide quantum dot (PbS QD) bulk heterojunctions. The titania morphology produced by our biotemplate allows charges to be efficiently collected from the bulk of the active material and light that is otherwise poorly absorbed by the QDs to be harvested using metal nanoparticles that exhibit plasmon resonances in the visible range. We show that high aspect ratio bacteriophages provide a structural template for synthesizing titania networks with tunable porosity, into which PbS QDs are infiltrated to create photoactive nanocomposites suitable for photovoltaics. Upon optimization, the generated photocurrent and power conversion efficiency of the bacteriophage-templated devices demonstrate a 2-fold improvement over those of control devices made with randomly organized titania nanoparticles. When the virus is complexed with gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), or silver nanoplates (Ag NPLs) during assembly, the device performance is further improved, with Ag NPLs enhancing the short-circuit current density and power conversion efficiency by 16% and 36.5%, respectively, over those of virus-based devices without NPs. The observed trends in photocurrent enhancement match well with numerical predictions, and the role of the nanostructured morphology on the device optics was computationally explored. The challenges overcome in this work could be extended to other heterojunction devices, such as hybrid systems involving conducting polymers, as well as other biologically templated electronics.
Date issued
2015-05
URI
http://hdl.handle.net/1721.1/102981
Department
Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies; Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Department of Mechanical Engineering; Koch Institute for Integrative Cancer Research at MIT
Journal
Journal of Physical Chemistry C
Publisher
American Chemical Society (ACS)
Citation
Dorval Courchesne, Noémie-Manuelle, Matthew T. Klug, Kevin J. Huang, Mark C. Weidman, Victor J. Cantú, Po-Yen Chen, Steven E. Kooi, et al. “Constructing Multifunctional Virus-Templated Nanoporous Composites for Thin Film Solar Cells: Contributions of Morphology and Optics to Photocurrent Generation.” The Journal of Physical Chemistry C 119:25 (June 10, 2015), p. 13987–14000.
Version: Author's final manuscript
ISSN
1932-7447
1932-7455

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.