Show simple item record

dc.contributor.authorDorval Courchesne, Noémie-Manuelle
dc.contributor.authorKlug, Matthew Thomas
dc.contributor.authorHuang, Kevin Joon-Ming
dc.contributor.authorWeidman, Mark Clayton
dc.contributor.authorCantu, Victor J.
dc.contributor.authorKooi, Steven E.
dc.contributor.authorYun, Dong Soo
dc.contributor.authorTisdale, William
dc.contributor.authorFang, Nicholas X.
dc.contributor.authorBelcher, Angela M.
dc.contributor.authorHammond, Paula T.
dc.contributor.authorChen, Po-Yen
dc.date.accessioned2016-06-06T15:55:55Z
dc.date.available2016-06-06T15:55:55Z
dc.date.issued2015-05
dc.date.submitted2015-05
dc.identifier.issn1932-7447
dc.identifier.issn1932-7455
dc.identifier.urihttp://hdl.handle.net/1721.1/102981
dc.description.abstractBiotemplates, such as the high aspect ratio M13 bacteriophage, can be used to nucleate noble metal nanoparticles and photoactive materials such as metal oxides, as well as organize them into continuous structures. Such attributes make them attractive scaffolds for solar applications requiring precise organization at the nanoscale. For instance, thin film solar cells benefit from nanostructured morphologies that aid light absorption and carrier transport. Here, we present a biotemplating strategy for assembling nanostructured thin film solar cells that enhance the generated photocurrent through two features: (1) a nanoporous and continuous M13 bacteriophage-templated titania network that improves charge collection and (2) the incorporation of metal nanoparticles within the active layer of the device to improve light harvesting. We demonstrate our ability to construct virus-templated solar cells by applying this strategy to depleted titania–lead sulfide quantum dot (PbS QD) bulk heterojunctions. The titania morphology produced by our biotemplate allows charges to be efficiently collected from the bulk of the active material and light that is otherwise poorly absorbed by the QDs to be harvested using metal nanoparticles that exhibit plasmon resonances in the visible range. We show that high aspect ratio bacteriophages provide a structural template for synthesizing titania networks with tunable porosity, into which PbS QDs are infiltrated to create photoactive nanocomposites suitable for photovoltaics. Upon optimization, the generated photocurrent and power conversion efficiency of the bacteriophage-templated devices demonstrate a 2-fold improvement over those of control devices made with randomly organized titania nanoparticles. When the virus is complexed with gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), or silver nanoplates (Ag NPLs) during assembly, the device performance is further improved, with Ag NPLs enhancing the short-circuit current density and power conversion efficiency by 16% and 36.5%, respectively, over those of virus-based devices without NPs. The observed trends in photocurrent enhancement match well with numerical predictions, and the role of the nanostructured morphology on the device optics was computationally explored. The challenges overcome in this work could be extended to other heterojunction devices, such as hybrid systems involving conducting polymers, as well as other biologically templated electronics.en_US
dc.description.sponsorshipMIT Energy Initiative (Eni-MIT Energy Fellowship)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award No. DMR- 0819762)en_US
dc.description.sponsorshipDavid H. Koch Institute for Integrative Cancer Research at MIT (NCI core grant P30-CA14051)en_US
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada (Postgraduate Scholarship)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Graduate Research Fellowship Grant No. 1122374)en_US
dc.language.isoen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/acs.jpcc.5b00295en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceProf. Hammond via Erja Kajosaloen_US
dc.titleConstructing Multifunctional Virus-Templated Nanoporous Composites for Thin Film Solar Cells: Contributions of Morphology and Optics to Photocurrent Generationen_US
dc.typeArticleen_US
dc.identifier.citationDorval Courchesne, Noémie-Manuelle, Matthew T. Klug, Kevin J. Huang, Mark C. Weidman, Victor J. Cantú, Po-Yen Chen, Steven E. Kooi, et al. “Constructing Multifunctional Virus-Templated Nanoporous Composites for Thin Film Solar Cells: Contributions of Morphology and Optics to Photocurrent Generation.” The Journal of Physical Chemistry C 119:25 (June 10, 2015), p. 13987–14000.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Soldier Nanotechnologiesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.approverHammond, Paula T.en_US
dc.contributor.mitauthorDorval Courchesne, Noémie-Manuelleen_US
dc.contributor.mitauthorKlug, Matthew Thomasen_US
dc.contributor.mitauthorHuang, Kevin Joon-Mingen_US
dc.contributor.mitauthorWeidman, Mark Claytonen_US
dc.contributor.mitauthorCantu, Victor J.en_US
dc.contributor.mitauthorChen, Po-Yenen_US
dc.contributor.mitauthorKooi, Steven E.en_US
dc.contributor.mitauthorYun, Dong Sooen_US
dc.contributor.mitauthorTisdale, Williamen_US
dc.contributor.mitauthorFang, Nicholas X.en_US
dc.contributor.mitauthorBelcher, Angela M.en_US
dc.contributor.mitauthorHammond, Paula T.en_US
dc.relation.journalJournal of Physical Chemistry Cen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsDorval Courchesne, Noémie-Manuelle; Klug, Matthew T.; Huang, Kevin J.; Weidman, Mark C.; Cantú, Victor J.; Chen, Po-Yen; Kooi, Steven E.; Yun, Dong Soo; Tisdale, William A.; Fang, Nicholas X.; Belcher, Angela M.; Hammond, Paula T.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9177-4313
dc.identifier.orcidhttps://orcid.org/0000-0001-6034-6458
dc.identifier.orcidhttps://orcid.org/0000-0001-9353-7453
dc.identifier.orcidhttps://orcid.org/0000-0002-6615-5342
dc.identifier.orcidhttps://orcid.org/0000-0001-5713-629X
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record