MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthetic RNA–protein modules integrated with native translation mechanisms to control gene expression in malaria parasites

Author(s)
Ganesan, Suresh Maddur; Falla Castillo, Diana Alejandra; Goldfless, Stephen Jacob; Nasamu, Armiyaw Sebastian; Niles, Jacquin C.
Thumbnail
DownloadGanesan-2016-Synthetic RNA.pdf (679.3Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Synthetic posttranscriptional regulation of gene expression is important for understanding fundamental biology and programming new cellular processes in synthetic biology. Previous strategies for regulating translation in eukaryotes have focused on disrupting individual steps in translation, including initiation and mRNA cleavage. In emphasizing modularity and cross-organism functionality, these systems are designed to operate orthogonally to native control mechanisms. Here we introduce a broadly applicable strategy for robustly controlling protein translation by integrating synthetic translational control via a small-molecule-regulated RNA–protein module with native mechanisms that simultaneously regulate multiple facets of cellular RNA fate. We demonstrate that this strategy reduces ‘leakiness’ to improve overall expression dynamic range, and can be implemented without sacrificing modularity and cross-organism functionality. We illustrate this in Saccharomyces cerevisae and the non-model human malarial parasite, Plasmodium falciparum. Given the limited functional genetics toolkit available for P. falciparum, we establish the utility of this strategy for defining essential genes.
Date issued
2016-03
URI
http://hdl.handle.net/1721.1/104064
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Journal
Nature Communications
Publisher
Springer Nature
Citation
Ganesan, Suresh M., Alejandra Falla, Stephen J. Goldfless, Armiyaw S. Nasamu, and Jacquin C. Niles. "Synthetic RNA-protein modules integrated with native translation mechanisms to control gene expression in malaria parasites." Nature Communications 7, Article number: 10727 (2016), pp.1-10.
Version: Final published version
ISSN
2041-1723

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.