Show simple item record

dc.contributor.authorGanesan, Suresh Maddur
dc.contributor.authorFalla Castillo, Diana Alejandra
dc.contributor.authorGoldfless, Stephen Jacob
dc.contributor.authorNasamu, Armiyaw Sebastian
dc.contributor.authorNiles, Jacquin C.
dc.date.accessioned2016-08-30T15:50:11Z
dc.date.available2016-08-30T15:50:11Z
dc.date.issued2016-03
dc.date.submitted2015-03
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/104064
dc.description.abstractSynthetic posttranscriptional regulation of gene expression is important for understanding fundamental biology and programming new cellular processes in synthetic biology. Previous strategies for regulating translation in eukaryotes have focused on disrupting individual steps in translation, including initiation and mRNA cleavage. In emphasizing modularity and cross-organism functionality, these systems are designed to operate orthogonally to native control mechanisms. Here we introduce a broadly applicable strategy for robustly controlling protein translation by integrating synthetic translational control via a small-molecule-regulated RNA–protein module with native mechanisms that simultaneously regulate multiple facets of cellular RNA fate. We demonstrate that this strategy reduces ‘leakiness’ to improve overall expression dynamic range, and can be implemented without sacrificing modularity and cross-organism functionality. We illustrate this in Saccharomyces cerevisae and the non-model human malarial parasite, Plasmodium falciparum. Given the limited functional genetics toolkit available for P. falciparum, we establish the utility of this strategy for defining essential genes.en_US
dc.description.sponsorshipMassachusetts Institute of Technology (MIT startup funds)en_US
dc.description.sponsorshipThomas and Stacey Siebel Foundation (Award)en_US
dc.description.sponsorshipNational Institute of General Medical Sciences (U.S.) (Center for Integrative Synthetic Biology Grant (P50 GM098792))en_US
dc.description.sponsorshipNational Institute of Environmental Health Sciences (Predoctoral Training Grant (5-T32-ES007020))en_US
dc.description.sponsorshipBill & Melinda Gates Foundation (Grand Challenges Explorations initiative (OPP1069759))en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH Director’s New Innovator Award (1DP2OD007124))en_US
dc.language.isoen_US
dc.publisherSpringer Natureen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms10727en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNature Publishing Groupen_US
dc.titleSynthetic RNA–protein modules integrated with native translation mechanisms to control gene expression in malaria parasitesen_US
dc.typeArticleen_US
dc.identifier.citationGanesan, Suresh M., Alejandra Falla, Stephen J. Goldfless, Armiyaw S. Nasamu, and Jacquin C. Niles. "Synthetic RNA-protein modules integrated with native translation mechanisms to control gene expression in malaria parasites." Nature Communications 7, Article number: 10727 (2016), pp.1-10.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.mitauthorGanesan, Suresh Madduren_US
dc.contributor.mitauthorFalla Castillo, Diana Alejandraen_US
dc.contributor.mitauthorGoldfless, Stephen Jacoben_US
dc.contributor.mitauthorNasamu, Armiyaw Sebastianen_US
dc.contributor.mitauthorNiles, Jacquin C.en_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5261-3835
dc.identifier.orcidhttps://orcid.org/0000-0002-7779-2216
dc.identifier.orcidhttps://orcid.org/0000-0003-1160-3969
dc.identifier.orcidhttps://orcid.org/0000-0002-6250-8796
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record