MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Index theory of the de Rham complex on manifolds with periodic ends

Author(s)
Ruberman, Daniel; Saveliev, Nikolai; Mrowka, Tomasz S
Thumbnail
DownloadMrowka_Index theory.pdf (126.6Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We study the de Rham complex on a smooth manifold with a periodic end modeled on an infinite cyclic cover [tilde over X]→X. The completion of this complex in exponentially weighted L² norms is Fredholm for all but finitely many exceptional weights determined by the eigenvalues of the covering translation map H[subscript ∗] ([tilde over X])→H[subscript ∗] ([tilde over X]). We calculate the index of this weighted de Rham complex for all weights away from the exceptional ones.
Date issued
2015-01
URI
http://hdl.handle.net/1721.1/104374
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Algebraic & Geometric Topology
Publisher
Mathematical Sciences Publishers
Citation
Mrowka, Tomasz, Daniel Ruberman, and Nikolai Saveliev. “Index Theory of the de Rham Complex on Manifolds with Periodic Ends.” Algebraic & Geometric Topology 14.6 (2015): 3689–3700.
Version: Original manuscript
ISSN
1472-2739
1472-2747

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.