MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Noncommutative numerical motives, Tannakian structures, and motivic Galois groups

Author(s)
Marcolli, Matilde; Trigo Neri Tabuada, Goncalo Jorge
Thumbnail
DownloadTabuada_Noncommutative motives.pdf (285.6Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
In this article we further the study of noncommutative numerical motives, initiated in [30, 31]. By exploring the change-of-coefficients mechanism, we start by improving some of the main results of [30]. Then, making use of the notion of Schur-finiteness, we prove that the category NNum(k)F of noncommutative numerical motives is (neutral) super-Tannakian. As in the commutative world, NNum(k)F is not Tannakian. In order to solve this problem we promote periodic cyclic homology to a well-defined symmetric monoidal functor [over-bar HP∗]on the category of noncommutative Chow motives. This allows us to introduce the correct noncommutative analogues CNC and DNC of Grothendieck's standard conjectures C and D. Assuming C[subscript NC], we prove that NNum(k)F can be made into a Tannakian category NNum[superscript †](k)F by modifying its symmetry isomorphism constraints. By further assuming D[subscript NC], we neutralize the Tannakian category Num†(k)F using [over-bar HP∗]. Via the (super-)Tannakian formalism, we then obtain well-defined noncommutative motivic Galois (super-)groups. Finally, making use of Deligne-Milne's theory of Tate triples, we construct explicit morphisms relating these noncommutative motivic Galois (super-)groups with the classical ones as suggested by Kontsevich.
Date issued
2016
URI
http://hdl.handle.net/1721.1/104797
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal of the European Mathematical Society
Publisher
European Mathematical Society Publishing House
Citation
Marcolli, Matilde, and Gonçalo Tabuada. “Noncommutative Numerical Motives, Tannakian Structures, and Motivic Galois Groups.” J. Eur. Math. Soc. 18, no. 3 (2016): 623–655.
Version: Original manuscript
ISSN
1435-9855
1435-9863

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.