dc.contributor.author | Marcolli, Matilde | |
dc.contributor.author | Trigo Neri Tabuada, Goncalo Jorge | |
dc.date.accessioned | 2016-10-12T20:55:40Z | |
dc.date.available | 2016-10-12T20:55:40Z | |
dc.date.issued | 2016 | |
dc.date.submitted | 2015-08 | |
dc.identifier.issn | 1435-9855 | |
dc.identifier.issn | 1435-9863 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/104797 | |
dc.description.abstract | In this article we further the study of noncommutative numerical motives, initiated in [30, 31]. By exploring the change-of-coefficients mechanism, we start by improving some of the main results of [30]. Then, making use of the notion of Schur-finiteness, we prove that the category NNum(k)F of noncommutative numerical motives is (neutral) super-Tannakian. As in the commutative world, NNum(k)F is not Tannakian. In order to solve this problem we promote periodic cyclic homology to a well-defined symmetric monoidal functor [over-bar HP∗]on the category of noncommutative Chow motives. This allows us to introduce the correct noncommutative analogues CNC and DNC of Grothendieck's standard conjectures C and D. Assuming C[subscript NC], we prove that NNum(k)F can be made into a Tannakian category NNum[superscript †](k)F by modifying its symmetry isomorphism constraints. By further assuming D[subscript NC], we neutralize the Tannakian category Num†(k)F using [over-bar HP∗]. Via the (super-)Tannakian formalism, we then obtain well-defined noncommutative motivic Galois (super-)groups. Finally, making use of Deligne-Milne's theory of Tate triples, we construct explicit morphisms relating these noncommutative motivic Galois (super-)groups with the classical ones as suggested by Kontsevich. | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (NSF grant DMS-0901221) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (NSF grant DMS-1007207) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (NSF grant DMS-1201512) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (NSF grant PHY-1205440) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (CAREER Award #1350472) | en_US |
dc.description.sponsorship | Fundação para a Ciência e a Tecnologia (Portugal) (project grant UID/MAT/00297/2013) | en_US |
dc.language.iso | en_US | |
dc.publisher | European Mathematical Society Publishing House | en_US |
dc.relation.isversionof | http://dx.doi.org/10.4171/jems/598 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Noncommutative numerical motives, Tannakian structures, and motivic Galois groups | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Marcolli, Matilde, and Gonçalo Tabuada. “Noncommutative Numerical Motives, Tannakian Structures, and Motivic Galois Groups.” J. Eur. Math. Soc. 18, no. 3 (2016): 623–655. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Trigo Neri Tabuada, Goncalo Jorge | |
dc.relation.journal | Journal of the European Mathematical Society | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.orderedauthors | Marcolli, Matilde; Tabuada, Gonçalo | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0001-5558-9236 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |