Show simple item record

dc.contributor.authorMarcolli, Matilde
dc.contributor.authorTrigo Neri Tabuada, Goncalo Jorge
dc.date.accessioned2016-10-12T20:55:40Z
dc.date.available2016-10-12T20:55:40Z
dc.date.issued2016
dc.date.submitted2015-08
dc.identifier.issn1435-9855
dc.identifier.issn1435-9863
dc.identifier.urihttp://hdl.handle.net/1721.1/104797
dc.description.abstractIn this article we further the study of noncommutative numerical motives, initiated in [30, 31]. By exploring the change-of-coefficients mechanism, we start by improving some of the main results of [30]. Then, making use of the notion of Schur-finiteness, we prove that the category NNum(k)F of noncommutative numerical motives is (neutral) super-Tannakian. As in the commutative world, NNum(k)F is not Tannakian. In order to solve this problem we promote periodic cyclic homology to a well-defined symmetric monoidal functor [over-bar HP∗]on the category of noncommutative Chow motives. This allows us to introduce the correct noncommutative analogues CNC and DNC of Grothendieck's standard conjectures C and D. Assuming C[subscript NC], we prove that NNum(k)F can be made into a Tannakian category NNum[superscript †](k)F by modifying its symmetry isomorphism constraints. By further assuming D[subscript NC], we neutralize the Tannakian category Num†(k)F using [over-bar HP∗]. Via the (super-)Tannakian formalism, we then obtain well-defined noncommutative motivic Galois (super-)groups. Finally, making use of Deligne-Milne's theory of Tate triples, we construct explicit morphisms relating these noncommutative motivic Galois (super-)groups with the classical ones as suggested by Kontsevich.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant DMS-0901221)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant DMS-1007207)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant DMS-1201512)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant PHY-1205440)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER Award #1350472)en_US
dc.description.sponsorshipFundação para a Ciência e a Tecnologia (Portugal) (project grant UID/MAT/00297/2013)en_US
dc.language.isoen_US
dc.publisherEuropean Mathematical Society Publishing Houseen_US
dc.relation.isversionofhttp://dx.doi.org/10.4171/jems/598en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleNoncommutative numerical motives, Tannakian structures, and motivic Galois groupsen_US
dc.typeArticleen_US
dc.identifier.citationMarcolli, Matilde, and Gonçalo Tabuada. “Noncommutative Numerical Motives, Tannakian Structures, and Motivic Galois Groups.” J. Eur. Math. Soc. 18, no. 3 (2016): 623–655.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorTrigo Neri Tabuada, Goncalo Jorge
dc.relation.journalJournal of the European Mathematical Societyen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsMarcolli, Matilde; Tabuada, Gonçaloen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5558-9236
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record