MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

3D-Printed Wood: Programming Hygroscopic Material Transformations

Author(s)
Correa, David; Reichert, Steffen; Menges, Achim; Papadopoulou, Athina; Guberan, Christopher; Jhaveri, Nynika; Tibbits, Skylar; ... Show more Show less
Thumbnail
DownloadCorrea-2015-3D-Printed Wood_ Pro.pdf (659.2Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Rapid advances in digital fabrication technologies and new materials development allow for direct control and programmability of physical material transformations. By utilizing multimaterial 3D printing technologies and anisotropic material compositions, we can physically program hygroscopic materials such as wood to precisely sense and self-transform based on fluctuations in the environment. While wood remains one of the most common building materials in use today, it is still predominantly designed to be industrially standardized rather than taking advantage of its inherent anisotropic properties. This research aims to enhance wood's anisotropic and hygroscopic properties by designing and 3D printing custom wood grain structures to promote tunable self-transformation. In this article we present new methods for designing hygroscopic wood transformations and custom techniques for energy activation. A differentiated printing method promotes wood transformation solely through the design of custom-printed wood fibers. Alternatively, a multimaterial printing method allows for greater control and intensified wood transformations through the precise design of multimaterial prints composed of both synthetic wood and polymers. The presented methods, techniques, and material tests demonstrate the first successful results of differentiated printed wood for self-transforming behavior, suggesting a new approach for programmable material and responsive architectures.
Date issued
2015-09
URI
http://hdl.handle.net/1721.1/104845
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Architecture; Massachusetts Institute of Technology. Self-Assembly Lab
Journal
3D Printing and Additive Manufacturing
Publisher
Mary Ann Liebert, Inc.
Citation
Correa, David et al. “3D-Printed Wood: Programming Hygroscopic Material Transformations.” 3D Printing and Additive Manufacturing 2.3 (2015): 106–116.
Version: Final published version
ISSN
2329-7662
2329-7670

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.