MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Anisotropic Growth of Random Surfaces in 2 + 1 Dimensions

Author(s)
Borodin, Alexei; Ferrari, Patrik L.
Thumbnail
Download220_2013_Article_1823.pdf (1.448Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We construct a family of stochastic growth models in 2 + 1 dimensions, that belong to the anisotropic KPZ class. Appropriate projections of these models yield 1 + 1 dimensional growth models in the KPZ class and random tiling models. We show that correlation functions associated to our models have determinantal structure, and we study large time asymptotics for one of the models. The main asymptotic results are: (1) The growing surface has a limit shape that consists of facets interpolated by a curved piece. (2) The one-point fluctuations of the height function in the curved part are asymptotically normal with variance of order ln(t) for time t ≫ 1. (3) There is a map of the (2 + 1)-dimensional space-time to the upper half-plane H such that on space-like submanifolds the multi-point fluctuations of the height function are asymptotically equal to those of the pullback of the Gaussian free (massless) field on H.
Date issued
2013-11
URI
http://hdl.handle.net/1721.1/104915
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Communications in Mathematical Physics
Publisher
Springer Berlin Heidelberg
Citation
Borodin, Alexei, and Patrik L. Ferrari. “Anisotropic Growth of Random Surfaces in 2 + 1 Dimensions.” Communications in Mathematical Physics 325.2 (2014): 603–684.
Version: Author's final manuscript
ISSN
0010-3616
1432-0916

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.