Show simple item record

dc.contributor.authorBorodin, Alexei
dc.contributor.authorFerrari, Patrik L.
dc.date.accessioned2016-10-21T18:41:18Z
dc.date.available2016-10-21T18:41:18Z
dc.date.issued2013-11
dc.date.submitted2012-08
dc.identifier.issn0010-3616
dc.identifier.issn1432-0916
dc.identifier.urihttp://hdl.handle.net/1721.1/104915
dc.description.abstractWe construct a family of stochastic growth models in 2 + 1 dimensions, that belong to the anisotropic KPZ class. Appropriate projections of these models yield 1 + 1 dimensional growth models in the KPZ class and random tiling models. We show that correlation functions associated to our models have determinantal structure, and we study large time asymptotics for one of the models. The main asymptotic results are: (1) The growing surface has a limit shape that consists of facets interpolated by a curved piece. (2) The one-point fluctuations of the height function in the curved part are asymptotically normal with variance of order ln(t) for time t ≫ 1. (3) There is a map of the (2 + 1)-dimensional space-time to the upper half-plane H such that on space-like submanifolds the multi-point fluctuations of the height function are asymptotically equal to those of the pullback of the Gaussian free (massless) field on H.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00220-013-1823-xen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleAnisotropic Growth of Random Surfaces in 2 + 1 Dimensionsen_US
dc.typeArticleen_US
dc.identifier.citationBorodin, Alexei, and Patrik L. Ferrari. “Anisotropic Growth of Random Surfaces in 2 + 1 Dimensions.” Communications in Mathematical Physics 325.2 (2014): 603–684.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorBorodin, Alexei
dc.relation.journalCommunications in Mathematical Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:24:02Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag Berlin Heidelberg
dspace.orderedauthorsBorodin, Alexei; Ferrari, Patrik L.en_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0002-2913-5238
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record