dc.contributor.author | Borodin, Alexei | |
dc.contributor.author | Ferrari, Patrik L. | |
dc.date.accessioned | 2016-10-21T18:41:18Z | |
dc.date.available | 2016-10-21T18:41:18Z | |
dc.date.issued | 2013-11 | |
dc.date.submitted | 2012-08 | |
dc.identifier.issn | 0010-3616 | |
dc.identifier.issn | 1432-0916 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/104915 | |
dc.description.abstract | We construct a family of stochastic growth models in 2 + 1 dimensions, that belong to the anisotropic KPZ class. Appropriate projections of these models yield 1 + 1 dimensional growth models in the KPZ class and random tiling models. We show that correlation functions associated to our models have determinantal structure, and we study large time asymptotics for one of the models. The main asymptotic results are: (1) The growing surface has a limit shape that consists of facets interpolated by a curved piece. (2) The one-point fluctuations of the height function in the curved part are asymptotically normal with variance of order ln(t) for time t ≫ 1. (3) There is a map of the (2 + 1)-dimensional space-time to the upper half-plane H such that on space-like submanifolds the multi-point fluctuations of the height function are asymptotically equal to those of the pullback of the Gaussian free (massless) field on H. | en_US |
dc.publisher | Springer Berlin Heidelberg | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/s00220-013-1823-x | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | Springer Berlin Heidelberg | en_US |
dc.title | Anisotropic Growth of Random Surfaces in 2 + 1 Dimensions | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Borodin, Alexei, and Patrik L. Ferrari. “Anisotropic Growth of Random Surfaces in 2 + 1 Dimensions.” Communications in Mathematical Physics 325.2 (2014): 603–684. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Borodin, Alexei | |
dc.relation.journal | Communications in Mathematical Physics | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2016-08-18T15:24:02Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | Springer-Verlag Berlin Heidelberg | |
dspace.orderedauthors | Borodin, Alexei; Ferrari, Patrik L. | en_US |
dspace.embargo.terms | N | en |
dc.identifier.orcid | https://orcid.org/0000-0002-2913-5238 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |