Show simple item record

dc.contributor.authorHakkarainen, Janne
dc.contributor.authorSolonen, Antti
dc.contributor.authorCui, Tiangang
dc.contributor.authorMarzouk, Youssef M
dc.date.accessioned2016-10-24T15:55:48Z
dc.date.available2016-10-24T15:55:48Z
dc.date.issued2016-03
dc.date.submitted2015-08
dc.identifier.issn0266-5611
dc.identifier.issn1361-6420
dc.identifier.urihttp://hdl.handle.net/1721.1/104940
dc.description.abstractA priori dimension reduction is a widely adopted technique for reducing the computational complexity of stationary inverse problems. In this setting, the solution of an inverse problem is parameterized by a low-dimensional basis that is often obtained from the truncated Karhunen–Loève expansion of the prior distribution. For high-dimensional inverse problems equipped with smoothing priors, this technique can lead to drastic reductions in parameter dimension and significant computational savings. In this paper, we extend the concept of a priori dimension reduction to non-stationary inverse problems, in which the goal is to sequentially infer the state of a dynamical system. Our approach proceeds in an offline–online fashion. We first identify a low-dimensional subspace in the state space before solving the inverse problem (the offline phase), using either the method of 'snapshots' or regularized covariance estimation. Then this subspace is used to reduce the computational complexity of various filtering algorithms—including the Kalman filter, extended Kalman filter, and ensemble Kalman filter—within a novel subspace-constrained Bayesian prediction-and-update procedure (the online phase). We demonstrate the performance of our new dimension reduction approach on various numerical examples. In some test cases, our approach reduces the dimensionality of the original problem by orders of magnitude and yields up to two orders of magnitude in computational savings.en_US
dc.description.sponsorshipAcademy of Finland (Projects 284715 and 267442)en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Advanced Scientific Computing Research (Grant DE-SC0003908)en_US
dc.language.isoen_US
dc.publisherIOP Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/0266-5611/32/4/045003en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleOn dimension reduction in Gaussian filtersen_US
dc.typeArticleen_US
dc.identifier.citationSolonen, Antti et al. “On Dimension Reduction in Gaussian Filters.” Inverse Problems 32.4 (2016): 45003.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorSolonen, Antti
dc.contributor.mitauthorCui, Tiangang
dc.contributor.mitauthorMarzouk, Youssef M
dc.relation.journalInverse Problemsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSolonen, Antti; Cui, Tiangang; Hakkarainen, Janne; Marzouk, Youssefen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7359-4696
dc.identifier.orcidhttps://orcid.org/0000-0002-4840-8545
dc.identifier.orcidhttps://orcid.org/0000-0001-8242-3290
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record