Show simple item record

dc.contributor.authorZhang, Lihai
dc.contributor.authorGardiner, Bruce S.
dc.contributor.authorWoodhouse, Francis G.
dc.contributor.authorBesier, Thor F.
dc.contributor.authorLloyd, David G.
dc.contributor.authorSmith, David W.
dc.contributor.authorGrodzinsky, Alan J
dc.date.accessioned2016-11-04T22:26:09Z
dc.date.available2016-11-04T22:26:09Z
dc.date.issued2015-07
dc.date.submitted2015-04
dc.identifier.issn0090-6964
dc.identifier.issn1573-9686
dc.identifier.urihttp://hdl.handle.net/1721.1/105228
dc.description.abstractTreatment options for osteoarthritis (OA) beyond pain relief or total knee replacement are very limited. Because of this, attention has shifted to identifying which factors increase the risk of OA in vulnerable populations in order to be able to give recommendations to delay disease onset or to slow disease progression. The gold standard is then to use principles of risk management, first to provide subject-specific estimates of risk and then to find ways of reducing that risk. Population studies of OA risk based on statistical associations do not provide such individually tailored information. Here we argue that mechanistic models of cartilage tissue maintenance and damage coupled to statistical models incorporating model uncertainty, united within the framework of structural reliability analysis, provide an avenue for bridging the disciplines of epidemiology, cell biology, genetics and biomechanics. Such models promise subject-specific OA risk assessment and personalized strategies for mitigating or even avoiding OA. We illustrate the proposed approach with a simple model of cartilage extracellular matrix synthesis and loss regulated by daily physical activity.en_US
dc.description.sponsorshipNational Health and Medical Research Council (Australia) (Project Grant No. 1051538.)en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10439-015-1393-5en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer USen_US
dc.titlePredicting Knee Osteoarthritisen_US
dc.typeArticleen_US
dc.identifier.citationGardiner, Bruce S. et al. “Predicting Knee Osteoarthritis.” Annals of Biomedical Engineering 44.1 (2016): 222–233.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorGrodzinsky, Alan J
dc.relation.journalAnnals of Biomedical Engineeringen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:44:11Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.orderedauthorsGardiner, Bruce S.; Woodhouse, Francis G.; Besier, Thor F.; Grodzinsky, Alan J.; Lloyd, David G.; Zhang, Lihai; Smith, David W.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-4942-3456
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record