Show simple item record

dc.contributor.authorYoo, Daehan
dc.contributor.authorMartin-Moreno, Luis
dc.contributor.authorMohr, Daniel A.
dc.contributor.authorCarretero-Palacios, Sol
dc.contributor.authorShaver, Jonah
dc.contributor.authorEbbesen, Thomas W.
dc.contributor.authorOh, Sang-Hyun
dc.contributor.authorNguyen, Ngoc Cuong
dc.contributor.authorPeraire, Jaime
dc.date.accessioned2016-12-06T19:46:31Z
dc.date.available2016-12-06T19:46:31Z
dc.date.issued2016-02
dc.date.submitted2016-02
dc.identifier.issn1530-6984
dc.identifier.issn1530-6992
dc.identifier.urihttp://hdl.handle.net/1721.1/105728
dc.description.abstractWe combine atomic layer lithography and glancing-angle ion polishing to create wafer-scale metamaterials composed of dense arrays of ultrasmall coaxial nanocavities in gold films. This new fabrication scheme makes it possible to shrink the diameter and increase the packing density of 2 nm-gap coaxial resonators, an extreme subwavelength structure first manufactured via atomic layer lithography, both by a factor of 100 with respect to previous studies. We demonstrate that the nonpropagating zeroth-order Fabry-Pérot mode, which possesses slow light-like properties at the cutoff resonance, traps infrared light inside 2 nm gaps (gap volume ∼ λ[superscript]3/10[superscript 6]). Notably, the annular gaps cover only 3% or less of the metal surface, while open-area normalized transmission is as high as 1700% at the epsilon-near-zero (ENZ) condition. The resulting energy accumulation alongside extraordinary optical transmission can benefit applications in nonlinear optics, optical trapping, and surface-enhanced spectroscopies. Furthermore, because the resonance wavelength is independent of the cavity length and dramatically red shifts as the gap size is reduced, large-area arrays can be constructed with λresonance ≫ period, making this fabrication method ideal for manufacturing resonant metamaterials.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Grants FA9550-12-1-0357 and FA9550-11-1-0141)en_US
dc.language.isoen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/acs.nanolett.6b00024en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceACSen_US
dc.titleHigh-Throughput Fabrication of Resonant Metamaterials with Ultrasmall Coaxial Apertures via Atomic Layer Lithographyen_US
dc.typeArticleen_US
dc.identifier.citationYoo, Daehan et al. “High-Throughput Fabrication of Resonant Metamaterials with Ultrasmall Coaxial Apertures via Atomic Layer Lithography.” Nano Letters 16.3 (2016): 2040–2046. © 2016 American Chemical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorNguyen, Ngoc Cuong
dc.contributor.mitauthorPeraire, Jaime
dc.relation.journalNano Lettersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsYoo, Daehan; Nguyen, Ngoc-Cuong; Martin-Moreno, Luis; Mohr, Daniel A.; Carretero-Palacios, Sol; Shaver, Jonah; Peraire, Jaime; Ebbesen, Thomas W.; Oh, Sang-Hyunen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8556-685X
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record