Show simple item record

dc.contributor.authorMitchell, Bernhard
dc.contributor.authorAltermatt, Pietro P.
dc.contributor.authorWagner, Hannes
dc.contributor.authorHofstetter, Jasmin
dc.contributor.authorBuonassisi, Anthony
dc.date.accessioned2017-03-15T15:31:36Z
dc.date.available2017-03-15T15:31:36Z
dc.date.issued2015-08
dc.identifier.issn1876-6102
dc.identifier.urihttp://hdl.handle.net/1721.1/107415
dc.description.abstractWe present a numerical simulation study of different multicrystalline silicon materials and solar cell architectures to understand today's efficiency limitations and future efficiency possibilities. We compare conventional full-area BSF and PERC solar cells to future cell designs with a gallium phosphide heteroemitter. For all designs, mc-Si materials with different excess carrier lifetime distributions are used as simulation input parameters to capture a broad range of materials. The results show that conventional solar cell designs are sufficient for generalized mean lifetimes between 40 – 90 μs, but do not give a clear advantage in terms of efficiency for higher mean lifetime mc-Si material because they are often limited by recombination in the phosphorus diffused emitter region. Heteroemitter designs instead increase in cell efficiency considerable up to generalized mean lifetimes of 380 μs because they are significantly less limited by recombination in the emitter and the bulk lifetime becomes more important. In conclusion, to benefit from increasing mc-Si lifetime, new cell designs, especially heteroemitter, are desirable.en_US
dc.description.sponsorshipUnited States. Department of Energy. Office of Energy Efficiency and Renewable Energy (Award DE-EE0006335)en_US
dc.description.sponsorshipAustralian Renewable Energy Agency (Postdoctoral Fellowship)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.egypro.2015.07.031en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceElsevieren_US
dc.titleDevice Architecture and Lifetime Requirements for High Efficiency Multicrystalline Silicon Solar Cellsen_US
dc.typeArticleen_US
dc.identifier.citationWagner, Hannes et al. “Device Architecture and Lifetime Requirements for High Efficiency Multicrystalline Silicon Solar Cells.” Energy Procedia 77 (2015): 225–230.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorWagner, Hannes
dc.contributor.mitauthorHofstetter, Jasmin
dc.contributor.mitauthorBuonassisi, Anthony
dc.relation.journalEnergy Procediaen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWagner, Hannes; Hofstetter, Jasmin; Mitchell, Bernhard; Altermatt, Pietro P.; Buonassisi, Tonioen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8345-4937
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record