MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Communication-constrained multi-AUV cooperative SLAM

Author(s)
Huang, Guoquan; Seto, Mae; Paull, Liam; Leonard, John J
Thumbnail
DownloadLeonard_Communication-constrained.pdf (1.683Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Multi-robot deployments have the potential for completing tasks more efficiently. For example, in simultaneous localization and mapping (SLAM), robots can better localize themselves and the map if they can share measurements of each other (direct encounters) and of commonly observed parts of the map (indirect encounters). However, performance is contingent on the quality of the communications channel. In the underwater scenario, communicating over any appreciable distance is achieved using acoustics which is low-bandwidth, slow, and unreliable, making cooperative operations very challenging. In this paper, we present a framework for cooperative SLAM (C-SLAM) for multiple autonomous underwater vehicles (AUVs) communicating only through acoustics. We develop a novel graph-based C-SLAM algorithm that is able to (optimally) generate communication packets whose size scales linearly with the number of observed features since the last successful transmission, constantly with the number of vehicles in the collective, and does not grow with time even the case of dropped packets, which are common. As a result, AUVs can bound their localization error without the need for pre-installed beacons or surfacing for GPS fixes during navigation, leading to significant reduction in time required to complete missions. The proposed algorithm is validated through realistic marine vehicle and acoustic communication simulations.
Date issued
2015-07
URI
http://hdl.handle.net/1721.1/107495
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA)
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Paull, Liam et al. “Communication-Constrained Multi-AUV Cooperative SLAM.” IEEE, 2015. 509–516.
Version: Author's final manuscript
ISBN
978-1-4799-6923-4

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.