Show simple item record

dc.contributor.authorKhan, Kamil A.
dc.contributor.authorWatson, Harry Alexander James
dc.contributor.authorBarton, Paul I
dc.date.accessioned2017-03-23T19:59:54Z
dc.date.available2017-03-23T19:59:54Z
dc.date.issued2016-05
dc.date.submitted2015-05
dc.identifier.issn0925-5001
dc.identifier.issn1573-2916
dc.identifier.urihttp://hdl.handle.net/1721.1/107681
dc.description.abstractMcCormick’s classical relaxation technique constructs closed-form convex and concave relaxations of compositions of simple intrinsic functions. These relaxations have several properties which make them useful for lower bounding problems in global optimization: they can be evaluated automatically, accurately, and computationally inexpensively, and they converge rapidly to the relaxed function as the underlying domain is reduced in size. They may also be adapted to yield relaxations of certain implicit functions and differential equation solutions. However, McCormick’s relaxations may be nonsmooth, and this nonsmoothness can create theoretical and computational obstacles when relaxations are to be deployed. This article presents a continuously differentiable variant of McCormick’s original relaxations in the multivariate McCormick framework of Tsoukalas and Mitsos. Gradients of the new differentiable relaxations may be computed efficiently using the standard forward or reverse modes of automatic differentiation. Extensions to differentiable relaxations of implicit functions and solutions of parametric ordinary differential equations are discussed. A C++ implementation based on the library MC++ is described and applied to a case study in nonsmooth nonconvex optimization.en_US
dc.description.sponsorshipNovartis-MIT Center for Continuous Manufacturingen_US
dc.description.sponsorshipStatoil ASAen_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Science (contract DE-AC02-06CH11357)en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10898-016-0440-6en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer USen_US
dc.titleDifferentiable McCormick relaxationsen_US
dc.typeArticleen_US
dc.identifier.citationKhan, Kamil A., Harry A. J. Watson, and Paul I. Barton. “Differentiable McCormick Relaxations.” Journal of Global Optimization 67, no. 4 (May 27, 2016): 687–729.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Process Systems Engineering Laboratoryen_US
dc.contributor.mitauthorWatson, Harry Alexander James
dc.contributor.mitauthorBarton, Paul I
dc.relation.journalJournal of Global Optimizationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-03-14T04:31:03Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media New York
dspace.orderedauthorsKhan, Kamil A.; Watson, Harry A. J.; Barton, Paul I.en_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0001-9372-649X
dc.identifier.orcidhttps://orcid.org/0000-0003-2895-9443
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record