MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Extended Formulations for Polygons

Author(s)
Fiorini, Samuel; Tiwary, Hans Raj; Rothvoss, Thomas
Thumbnail
Download454_2012_Article_9421.pdf (444.5Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The extension complexity of a polytope P is the smallest integer k such that P is the projection of a polytope Q with k facets. We study the extension complexity of n-gons in the plane. First, we give a new proof that the extension complexity of regular n-gons is O(log n), a result originating from work by Ben-Tal and Nemirovski (Math. Oper. Res. 26(2), 193–205, 2001). Our proof easily generalizes to other permutahedra and simplifies proofs of recent results by Goemans (2009), and Kaibel and Pashkovich (2011). Second, we prove a lower bound of √(2n) on the extension complexity of generic n-gons. Finally, we prove that there exist n-gons whose vertices lie on an O(n)×O(n[superscript 2]) integer grid with extension complexity Ω(√/n./(√(log n))).
Date issued
2012-03
URI
http://hdl.handle.net/1721.1/107947
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Discrete & Computational Geometry
Publisher
Springer-Verlag
Citation
Fiorini, Samuel, Thomas Rothvoß, and Hans Raj Tiwary. “Extended Formulations for Polygons.” Discrete & Computational Geometry 48, no. 3 (March 16, 2012): 658–668.
Version: Author's final manuscript
ISSN
0179-5376
1432-0444

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.