dc.contributor.author | Fiorini, Samuel | |
dc.contributor.author | Tiwary, Hans Raj | |
dc.contributor.author | Rothvoss, Thomas | |
dc.date.accessioned | 2017-04-07T17:36:07Z | |
dc.date.available | 2017-04-07T17:36:07Z | |
dc.date.issued | 2012-03 | |
dc.date.submitted | 2012-02 | |
dc.identifier.issn | 0179-5376 | |
dc.identifier.issn | 1432-0444 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/107947 | |
dc.description.abstract | The extension complexity of a polytope P is the smallest integer k such that P is the projection of a polytope Q with k facets. We study the extension complexity of n-gons in the plane. First, we give a new proof that the extension complexity of regular n-gons is O(log n), a result originating from work by Ben-Tal and Nemirovski (Math. Oper. Res. 26(2), 193–205, 2001). Our proof easily generalizes to other permutahedra and simplifies proofs of recent results by Goemans (2009), and Kaibel and Pashkovich (2011). Second, we prove a lower bound of √(2n) on the extension complexity of generic n-gons. Finally, we prove that there exist n-gons whose vertices lie on an O(n)×O(n[superscript 2]) integer grid with extension complexity Ω(√/n./(√(log n))). | en_US |
dc.description.sponsorship | Alexander von Humboldt-Stiftung. Feodor Lynen Postdoctoral Fellowship | en_US |
dc.description.sponsorship | United States. Office of Naval Research (Grant N00014-11-1-0053) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Contract CCF-08298780 | en_US |
dc.publisher | Springer-Verlag | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/s00454-012-9421-9 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | Springer-Verlag | en_US |
dc.title | Extended Formulations for Polygons | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Fiorini, Samuel, Thomas Rothvoß, and Hans Raj Tiwary. “Extended Formulations for Polygons.” Discrete & Computational Geometry 48, no. 3 (March 16, 2012): 658–668. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Rothvoss, Thomas | |
dc.relation.journal | Discrete & Computational Geometry | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2016-08-18T15:41:10Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | Springer Science+Business Media, LLC | |
dspace.orderedauthors | Fiorini, Samuel; Rothvoß, Thomas; Tiwary, Hans Raj | en_US |
dspace.embargo.terms | N | en |
mit.license | PUBLISHER_POLICY | en_US |
mit.metadata.status | Complete | |