Show simple item record

dc.contributor.authorFiorini, Samuel
dc.contributor.authorTiwary, Hans Raj
dc.contributor.authorRothvoss, Thomas
dc.date.accessioned2017-04-07T17:36:07Z
dc.date.available2017-04-07T17:36:07Z
dc.date.issued2012-03
dc.date.submitted2012-02
dc.identifier.issn0179-5376
dc.identifier.issn1432-0444
dc.identifier.urihttp://hdl.handle.net/1721.1/107947
dc.description.abstractThe extension complexity of a polytope P is the smallest integer k such that P is the projection of a polytope Q with k facets. We study the extension complexity of n-gons in the plane. First, we give a new proof that the extension complexity of regular n-gons is O(log n), a result originating from work by Ben-Tal and Nemirovski (Math. Oper. Res. 26(2), 193–205, 2001). Our proof easily generalizes to other permutahedra and simplifies proofs of recent results by Goemans (2009), and Kaibel and Pashkovich (2011). Second, we prove a lower bound of √(2n) on the extension complexity of generic n-gons. Finally, we prove that there exist n-gons whose vertices lie on an O(n)×O(n[superscript 2]) integer grid with extension complexity Ω(√/n./(√(log n))).en_US
dc.description.sponsorshipAlexander von Humboldt-Stiftung. Feodor Lynen Postdoctoral Fellowshipen_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-11-1-0053)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Contract CCF-08298780en_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00454-012-9421-9en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer-Verlagen_US
dc.titleExtended Formulations for Polygonsen_US
dc.typeArticleen_US
dc.identifier.citationFiorini, Samuel, Thomas Rothvoß, and Hans Raj Tiwary. “Extended Formulations for Polygons.” Discrete & Computational Geometry 48, no. 3 (March 16, 2012): 658–668.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorRothvoss, Thomas
dc.relation.journalDiscrete & Computational Geometryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:41:10Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media, LLC
dspace.orderedauthorsFiorini, Samuel; Rothvoß, Thomas; Tiwary, Hans Rajen_US
dspace.embargo.termsNen
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record