A risk-aware architecture for resilient spacecraft operations
Author(s)
McGhan, Catharine L. R.; Murray, Richard M.; Serra, Romain; Ingham, Michel D.; Ono, Masahiro; Estlin, Tara; Williams, Brian C; ... Show more Show less
DownloadWilliams_A risk-aware.pdf (8.371Mb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
In this paper we discuss a resilient, risk-aware software architecture for onboard, real-time autonomous operations that is intended to robustly handle uncertainty in space-craft behavior within hazardous and unconstrained environments, without unnecessarily increasing complexity. This architecture, the Resilient Spacecraft Executive (RSE), serves three main functions: (1) adapting to component failures to allow graceful degradation, (2) accommodating environments, science observations, and spacecraft capabilities that are not fully known in advance, and (3) making risk-aware decisions without waiting for slow ground-based reactions. This RSE is made up of four main parts: deliberative, habitual, and reflexive layers, and a state estimator that interfaces with all three. We use a risk-aware goal-directed executive within the deliberative layer to perform risk-informed planning, to satisfy the mission goals (specified by mission control) within the specified priorities and constraints. Other state-of-the-art algorithms to be integrated into the RSE include correct-by-construction control synthesis and model-based estimation and diagnosis. We demonstrate the feasibility of the architecture in a simple implementation of the RSE for a simulated Mars rover scenario.
Date issued
2015-06Department
Massachusetts Institute of Technology. Department of Aeronautics and AstronauticsJournal
2015 IEEE Aerospace Conference
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
.McGhan, Catharine L. R. et al. “A Risk-Aware Architecture for Resilient Spacecraft Operations.” 2015 IEEE Aerospace Conference, 7-14 March, 2015, Big Sky, MT, USA, IEEE, 2015. 1–15.
Version: Author's final manuscript
ISBN
978-1-4799-5379-0
978-1-4799-5380-6