MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Phase transition-induced band edge engineering of BiVO

Author(s)
Kang, Hyun Joon; Kong, Ki-Jeong; Park, Hunmin; Lee, Younghye; Gleason, Karen K.; Lee, Jae Sung; Jo, Won Jun; Lee, Yun Seog; Buonassisi, Anthony; ... Show more Show less
Thumbnail
DownloadJo-2015-Phase transition-ind.pdf (1007.Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Through phase transition-induced band edge engineering by dual doping with In and Mo, a new greenish BiVO[subscript 4] (Bi[subscript 1-X]In[subscript X]V[subscript 1-X]Mo[subscript X]O[subscript 4]) is developed that has a larger band gap energy than the usual yellow scheelite monoclinic BiVO[subscript 4] as well as a higher (more negative) conduction band than H[superscript +]/H[subscript 2] potential [0 VRHE (reversible hydrogen electrode) at pH 7]. Hence, it can extract H[subscript 2] from pure water by visible light-driven overall water splitting without using any sacrificial reagents. The density functional theory calculation indicates that In[superscript 3+]/Mo[superscript 6+] dual doping triggers partial phase transformation from pure monoclinic BiVO[subscript 4] to a mixture of monoclinic BiVO[subscript 4] and tetragonal BiVO[subscript 4], which sequentially leads to unit cell volume growth, compressive lattice strain increase, conduction band edge uplift, and band gap widening.
Date issued
2015-10
URI
http://hdl.handle.net/1721.1/108674
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Proceedings of the National Academy of Sciences of the United States of America
Publisher
National Academy of Sciences (U.S.)
Citation
Jo, Won Jun et al. “Phase Transition-Induced Band Edge Engineering of BiVO 4 to Split Pure Water under Visible Light.” Proceedings of the National Academy of Sciences 112.45 (2015): 13774–13778. © 2015 National Academy of Sciences
Version: Final published version
ISSN
0027-8424
1091-6490

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.