Show simple item record

dc.contributor.authorKang, Hyun Joon
dc.contributor.authorKong, Ki-Jeong
dc.contributor.authorPark, Hunmin
dc.contributor.authorLee, Younghye
dc.contributor.authorGleason, Karen K.
dc.contributor.authorLee, Jae Sung
dc.contributor.authorJo, Won Jun
dc.contributor.authorLee, Yun Seog
dc.contributor.authorBuonassisi, Anthony
dc.date.accessioned2017-05-04T18:40:24Z
dc.date.available2017-05-04T18:40:24Z
dc.date.issued2015-10
dc.date.submitted2015-05
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://hdl.handle.net/1721.1/108674
dc.description.abstractThrough phase transition-induced band edge engineering by dual doping with In and Mo, a new greenish BiVO[subscript 4] (Bi[subscript 1-X]In[subscript X]V[subscript 1-X]Mo[subscript X]O[subscript 4]) is developed that has a larger band gap energy than the usual yellow scheelite monoclinic BiVO[subscript 4] as well as a higher (more negative) conduction band than H[superscript +]/H[subscript 2] potential [0 VRHE (reversible hydrogen electrode) at pH 7]. Hence, it can extract H[subscript 2] from pure water by visible light-driven overall water splitting without using any sacrificial reagents. The density functional theory calculation indicates that In[superscript 3+]/Mo[superscript 6+] dual doping triggers partial phase transformation from pure monoclinic BiVO[subscript 4] to a mixture of monoclinic BiVO[subscript 4] and tetragonal BiVO[subscript 4], which sequentially leads to unit cell volume growth, compressive lattice strain increase, conduction band edge uplift, and band gap widening.en_US
dc.description.sponsorshipU.S. Army Research Laboratory (Soldier Nanotechnologies Contract W911NF-13-D-0001)en_US
dc.description.sponsorshipUnited States. Army Research Office (Soldier Nanotechnologies Contract W911NF-13-D-0001)en_US
dc.language.isoen_US
dc.publisherNational Academy of Sciences (U.S.)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/pnas.1509674112en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceNational Academy of Sciences (U.S.)en_US
dc.titlePhase transition-induced band edge engineering of BiVOen_US
dc.typeArticleen_US
dc.identifier.citationJo, Won Jun et al. “Phase Transition-Induced Band Edge Engineering of BiVO 4 to Split Pure Water under Visible Light.” Proceedings of the National Academy of Sciences 112.45 (2015): 13774–13778. © 2015 National Academy of Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorJo, Won Jun
dc.contributor.mitauthorLee, Yun Seog
dc.contributor.mitauthorBuonassisi, Anthony
dc.relation.journalProceedings of the National Academy of Sciences of the United States of Americaen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsJo, Won Jun; Kang, Hyun Joon; Kong, Ki-Jeong; Lee, Yun Seog; Park, Hunmin; Lee, Younghye; Buonassisi, Tonio; Gleason, Karen K.; Lee, Jae Sungen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8345-4937
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record