MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data-Driven Modeling of the Airport Configuration Selection Process

Author(s)
Ramanujam, Varun; Balakrishnan, Hamsa
Thumbnail
DownloadBalakrishnan_Data-driven.pdf (1.425Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The runway configuration is the set of the runways at an airport that are used for arrivals and departures at any time. While many factors, including weather, expected demand, environmental considerations, and coordination of flows with neighboring airports, influence the choice of runway configuration, the actual selection decision is made by air traffic controllers in the airport tower. As a result, the capacity of an airport at any time is dependent on the behavior of human decision makers. This paper develops a statistical model to characterize the configuration selection decision process using empirical observations. The proposed approach, based on the discrete-choice modeling framework, identifies the influence of various factors in terms of the utility function of the decision maker. The parameters of the utility functions are estimated through likelihood maximization. Correlations between different alternatives are captured using a multinomial “nested logit” model. A key novelty of this study is the quantitative assessment of the effect of inertia, or the resistance to configuration changes, on the configuration selection process. The developed models are used to predict the runway configuration 3 h ahead of time, given operating conditions such as wind, visibility, and demand. Case studies based on data from Newark (EWR) and LaGuardia (LGA) airports show that the proposed model predicts runway configuration choices significantly better than a baseline model that only considers the historical frequencies of occurrence of different configurations.
Date issued
2015-04
URI
http://hdl.handle.net/1721.1/108688
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
IEEE Transactions on Human-Machine Systems
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Ramanujam, Varun, and Hamsa Balakrishnan. “Data-Driven Modeling of the Airport Configuration Selection Process.” IEEE Transactions on Human-Machine Systems 45.4 (2015): 490–499.
Version: Author's final manuscript
ISSN
2168-2291
2168-2305

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.