Show simple item record

dc.contributor.authorRamanujam, Varun
dc.contributor.authorBalakrishnan, Hamsa
dc.date.accessioned2017-05-05T13:51:10Z
dc.date.available2017-05-05T13:51:10Z
dc.date.issued2015-04
dc.identifier.issn2168-2291
dc.identifier.issn2168-2305
dc.identifier.urihttp://hdl.handle.net/1721.1/108688
dc.description.abstractThe runway configuration is the set of the runways at an airport that are used for arrivals and departures at any time. While many factors, including weather, expected demand, environmental considerations, and coordination of flows with neighboring airports, influence the choice of runway configuration, the actual selection decision is made by air traffic controllers in the airport tower. As a result, the capacity of an airport at any time is dependent on the behavior of human decision makers. This paper develops a statistical model to characterize the configuration selection decision process using empirical observations. The proposed approach, based on the discrete-choice modeling framework, identifies the influence of various factors in terms of the utility function of the decision maker. The parameters of the utility functions are estimated through likelihood maximization. Correlations between different alternatives are captured using a multinomial “nested logit” model. A key novelty of this study is the quantitative assessment of the effect of inertia, or the resistance to configuration changes, on the configuration selection process. The developed models are used to predict the runway configuration 3 h ahead of time, given operating conditions such as wind, visibility, and demand. Case studies based on data from Newark (EWR) and LaGuardia (LGA) airports show that the proposed model predicts runway configuration choices significantly better than a baseline model that only considers the historical frequencies of occurrence of different configurations.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1239054)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/THMS.2015.2411743en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleData-Driven Modeling of the Airport Configuration Selection Processen_US
dc.typeArticleen_US
dc.identifier.citationRamanujam, Varun, and Hamsa Balakrishnan. “Data-Driven Modeling of the Airport Configuration Selection Process.” IEEE Transactions on Human-Machine Systems 45.4 (2015): 490–499.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorBalakrishnan, Hamsa
dc.relation.journalIEEE Transactions on Human-Machine Systemsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsRamanujam, Varun; Balakrishnan, Hamsaen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8624-7041
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record