MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Embedding Stacked Polytopes on a Polynomial-Size Grid

Author(s)
Schulz, André; Demaine, Erik D
Thumbnail
Download454_2017_9887_ReferencePDF.pdf (496.7Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
A stacking operation adds a d-simplex on top of a facet of a simplicial d-polytope while maintaining the convexity of the polytope. A stacked d-polytope is a polytope that is obtained from a d-simplex and a series of stacking operations. We show that for a fixed d every stacked d-polytope with n vertices can be realized with nonnegative integer coordinates. The coordinates are bounded by O(n[superscript 2 log[subscript 2](2d)], except for one axis, where the coordinates are bounded by O(n[superscript 3 log[subscript 2](2d)]. The described realization can be computed with an easy algorithm. The realization of the polytopes is obtained with a lifting technique which produces an embedding on a large grid. We establish a rounding scheme that places the vertices on a sparser grid, while maintaining the convexity of the embedding.
Date issued
2017-03
URI
http://hdl.handle.net/1721.1/108786
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Discrete & Computational Geometry
Publisher
Springer US
Citation
Demaine, Erik D., and André Schulz. “Embedding Stacked Polytopes on a Polynomial-Size Grid.” Discrete & Computational Geometry 57, no. 4 (March 21, 2017): 782–809.
Version: Author's final manuscript
ISSN
0179-5376
1432-0444

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.