Collective atomic scattering and motional effects in a dense coherent medium
Author(s)
Bromley, S. L.; Zhu, B.; Bishof, M.; Zhang, X.; Bothwell, T.; Schachenmayer, J.; Kaiser, R.; Yelin, S. F.; Lukin, M. D.; Rey, A. M.; Ye, J.; Nicholson, Travis; ... Show more Show less
DownloadBromley-2016-Collective atomic.pdf (691.3Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
We investigate collective emission from coherently driven ultracold [superscript 88]Sr atoms. We perform two sets of experiments using a strong and weak transition that are insensitive and sensitive, respectively, to atomic motion at 1 μK. We observe highly directional forward emission with a peak intensity that is enhanced, for the strong transition, by >10[superscript 3] compared with that in the transverse direction. This is accompanied by substantial broadening of spectral lines. For the weak transition, the forward enhancement is substantially reduced due to motion. Meanwhile, a density-dependent frequency shift of the weak transition (∼10% of the natural linewidth) is observed. In contrast, this shift is suppressed to <1% of the natural linewidth for the strong transition. Along the transverse direction, we observe strong polarization dependences of the fluorescence intensity and line broadening for both transitions. The measurements are reproduced with a theoretical model treating the atoms as coherent, interacting radiating dipoles.
Date issued
2016-03Department
Massachusetts Institute of Technology. Research Laboratory of Electronics; MIT-Harvard Center for Ultracold AtomsJournal
Nature Communications
Publisher
Nature Publishing Group
Citation
Bromley, S. L. et al. “Collective Atomic Scattering and Motional Effects in a Dense Coherent Medium.” Nature Communications 7 (2016): 11039. © 2017 Macmillan Publishers Limited
Version: Final published version
ISSN
2041-1723