Show simple item record

dc.contributor.authorBromley, S. L.
dc.contributor.authorZhu, B.
dc.contributor.authorBishof, M.
dc.contributor.authorZhang, X.
dc.contributor.authorBothwell, T.
dc.contributor.authorSchachenmayer, J.
dc.contributor.authorKaiser, R.
dc.contributor.authorYelin, S. F.
dc.contributor.authorLukin, M. D.
dc.contributor.authorRey, A. M.
dc.contributor.authorYe, J.
dc.contributor.authorNicholson, Travis
dc.date.accessioned2017-05-12T23:34:58Z
dc.date.available2017-05-12T23:34:58Z
dc.date.issued2016-03
dc.date.submitted2015-10
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/109067
dc.description.abstractWe investigate collective emission from coherently driven ultracold [superscript 88]Sr atoms. We perform two sets of experiments using a strong and weak transition that are insensitive and sensitive, respectively, to atomic motion at 1 μK. We observe highly directional forward emission with a peak intensity that is enhanced, for the strong transition, by >10[superscript 3] compared with that in the transverse direction. This is accompanied by substantial broadening of spectral lines. For the weak transition, the forward enhancement is substantially reduced due to motion. Meanwhile, a density-dependent frequency shift of the weak transition (∼10% of the natural linewidth) is observed. In contrast, this shift is suppressed to <1% of the natural linewidth for the strong transition. Along the transverse direction, we observe strong polarization dependences of the fluorescence intensity and line broadening for both transitions. The measurements are reproduced with a theoretical model treating the atoms as coherent, interacting radiating dipoles.en_US
dc.description.sponsorshipNational Institute of Standards and Technology (U.S.)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) Physics Frontier Center at the Joint Quantum Instituteen_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Researchen_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiativeen_US
dc.description.sponsorshipUnited States. Army Research Officeen_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency. Quantum-Assisted Sensing and Readout (QuASAR)en_US
dc.description.sponsorshipHarvard University. Institute for Theoretical Atomic, Molecular and Optical Physicsen_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms11039en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNature Publishing Groupen_US
dc.titleCollective atomic scattering and motional effects in a dense coherent mediumen_US
dc.typeArticleen_US
dc.identifier.citationBromley, S. L. et al. “Collective Atomic Scattering and Motional Effects in a Dense Coherent Medium.” Nature Communications 7 (2016): 11039. © 2017 Macmillan Publishers Limiteden_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.departmentMIT-Harvard Center for Ultracold Atomsen_US
dc.contributor.mitauthorNicholson, Travis
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBromley, S. L.; Zhu, B.; Bishof, M.; Zhang, X.; Bothwell, T.; Schachenmayer, J.; Nicholson, T. L.; Kaiser, R.; Yelin, S. F.; Lukin, M. D.; Rey, A. M.; Ye, J.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0503-7991
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record