The thermodynamic scale of inorganic crystalline metastability
Author(s)
Ong, S. P.; Hautier, G.; Jain, A.; Gamst, A. C.; Persson, K. A.; Sun, Wenhao; Dacek, Stephen Thomas; Richards, William D; Ceder, Gerbrand; ... Show more Show less
DownloadThe thermodynamic scale.pdf (1.066Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
The space of metastable materials offers promising new design opportunities for next-generation technological materials, such as complex oxides, semiconductors, pharmaceuticals, steels, and beyond. Although metastable phases are ubiquitous in both nature and technology, only a heuristic understanding of their underlying thermodynamics exists. We report a large-scale data-mining study of the Materials Project, a high-throughput database of density functional theory–calculated energetics of Inorganic Crystal Structure Database structures, to explicitly quantify the thermodynamic scale of metastability for 29,902 observed inorganic crystalline phases. We reveal the influence of chemistry and composition on the accessible thermodynamic range of crystalline metastability for polymorphic and phase-separating compounds, yielding new physical insights that can guide the design of novel metastable materials. We further assert that not all low-energy metastable compounds can necessarily be synthesized, and propose a principle of ‘remnant metastability’—that observable metastable crystalline phases are generally remnants of thermodynamic conditions where they were once the lowest free-energy phase.
Date issued
2016-10Department
Massachusetts Institute of Technology. Department of Materials Science and EngineeringJournal
Science Advances
Publisher
American Association for the Advancement of Science (AAAS)
Citation
Sun, W.; Dacek, S. T.; Ong, S. P.; Hautier, G.; Jain, A.; Richards, W. D.; Gamst, A. C.; Persson, K. A. and Ceder, G. “The Thermodynamic Scale of Inorganic Crystalline Metastability.” Science Advances 2, no. 11 (November 2016): e1600225–e1600225 © 2016 The Authors
Version: Final published version
ISSN
2375-2548