Show simple item record

dc.contributor.authorOng, S. P.
dc.contributor.authorHautier, G.
dc.contributor.authorJain, A.
dc.contributor.authorGamst, A. C.
dc.contributor.authorPersson, K. A.
dc.contributor.authorSun, Wenhao
dc.contributor.authorDacek, Stephen Thomas
dc.contributor.authorRichards, William D
dc.contributor.authorCeder, Gerbrand
dc.date.accessioned2017-05-26T14:21:19Z
dc.date.available2017-05-26T14:21:19Z
dc.date.issued2016-10
dc.date.submitted2014-11
dc.identifier.issn2375-2548
dc.identifier.urihttp://hdl.handle.net/1721.1/109368
dc.description.abstractThe space of metastable materials offers promising new design opportunities for next-generation technological materials, such as complex oxides, semiconductors, pharmaceuticals, steels, and beyond. Although metastable phases are ubiquitous in both nature and technology, only a heuristic understanding of their underlying thermodynamics exists. We report a large-scale data-mining study of the Materials Project, a high-throughput database of density functional theory–calculated energetics of Inorganic Crystal Structure Database structures, to explicitly quantify the thermodynamic scale of metastability for 29,902 observed inorganic crystalline phases. We reveal the influence of chemistry and composition on the accessible thermodynamic range of crystalline metastability for polymorphic and phase-separating compounds, yielding new physical insights that can guide the design of novel metastable materials. We further assert that not all low-energy metastable compounds can necessarily be synthesized, and propose a principle of ‘remnant metastability’—that observable metastable crystalline phases are generally remnants of thermodynamic conditions where they were once the lowest free-energy phase.en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Basic Energy Sciences (DE-AC02-05CH11231)en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Basic Energy Sciences (contract UGA-0-41029-16/ER392000)en_US
dc.language.isoen_US
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1126/sciadv.1600225en_US
dc.rightsCreative Commons Attribution-NonCommercial 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/en_US
dc.sourceAAASen_US
dc.titleThe thermodynamic scale of inorganic crystalline metastabilityen_US
dc.typeArticleen_US
dc.identifier.citationSun, W.; Dacek, S. T.; Ong, S. P.; Hautier, G.; Jain, A.; Richards, W. D.; Gamst, A. C.; Persson, K. A. and Ceder, G. “The Thermodynamic Scale of Inorganic Crystalline Metastability.” Science Advances 2, no. 11 (November 2016): e1600225–e1600225 © 2016 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.mitauthorSun, Wenhao
dc.contributor.mitauthorDacek, Stephen Thomas
dc.contributor.mitauthorRichards, William D
dc.contributor.mitauthorCeder, Gerbrand
dc.relation.journalScience Advancesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSun, W.; Dacek, S. T.; Ong, S. P.; Hautier, G.; Jain, A.; Richards, W. D.; Gamst, A. C.; Persson, K. A.; Ceder, G.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8416-455X
dc.identifier.orcidhttps://orcid.org/0000-0002-7737-1278
dc.identifier.orcidhttps://orcid.org/0000-0002-8126-5048
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record