dc.contributor.author | Ong, S. P. | |
dc.contributor.author | Hautier, G. | |
dc.contributor.author | Jain, A. | |
dc.contributor.author | Gamst, A. C. | |
dc.contributor.author | Persson, K. A. | |
dc.contributor.author | Sun, Wenhao | |
dc.contributor.author | Dacek, Stephen Thomas | |
dc.contributor.author | Richards, William D | |
dc.contributor.author | Ceder, Gerbrand | |
dc.date.accessioned | 2017-05-26T14:21:19Z | |
dc.date.available | 2017-05-26T14:21:19Z | |
dc.date.issued | 2016-10 | |
dc.date.submitted | 2014-11 | |
dc.identifier.issn | 2375-2548 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/109368 | |
dc.description.abstract | The space of metastable materials offers promising new design opportunities for next-generation technological materials, such as complex oxides, semiconductors, pharmaceuticals, steels, and beyond. Although metastable phases are ubiquitous in both nature and technology, only a heuristic understanding of their underlying thermodynamics exists. We report a large-scale data-mining study of the Materials Project, a high-throughput database of density functional theory–calculated energetics of Inorganic Crystal Structure Database structures, to explicitly quantify the thermodynamic scale of metastability for 29,902 observed inorganic crystalline phases. We reveal the influence of chemistry and composition on the accessible thermodynamic range of crystalline metastability for polymorphic and phase-separating compounds, yielding new physical insights that can guide the design of novel metastable materials. We further assert that not all low-energy metastable compounds can necessarily be synthesized, and propose a principle of ‘remnant metastability’—that observable metastable crystalline phases are generally remnants of thermodynamic conditions where they were once the lowest free-energy phase. | en_US |
dc.description.sponsorship | United States. Dept. of Energy. Office of Basic Energy Sciences (DE-AC02-05CH11231) | en_US |
dc.description.sponsorship | United States. Dept. of Energy. Office of Basic Energy Sciences (contract UGA-0-41029-16/ER392000) | en_US |
dc.language.iso | en_US | |
dc.publisher | American Association for the Advancement of Science (AAAS) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1126/sciadv.1600225 | en_US |
dc.rights | Creative Commons Attribution-NonCommercial 4.0 International | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | en_US |
dc.source | AAAS | en_US |
dc.title | The thermodynamic scale of inorganic crystalline metastability | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Sun, W.; Dacek, S. T.; Ong, S. P.; Hautier, G.; Jain, A.; Richards, W. D.; Gamst, A. C.; Persson, K. A. and Ceder, G. “The Thermodynamic Scale of Inorganic Crystalline Metastability.” Science Advances 2, no. 11 (November 2016): e1600225–e1600225 © 2016 The Authors | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Materials Science and Engineering | en_US |
dc.contributor.mitauthor | Sun, Wenhao | |
dc.contributor.mitauthor | Dacek, Stephen Thomas | |
dc.contributor.mitauthor | Richards, William D | |
dc.contributor.mitauthor | Ceder, Gerbrand | |
dc.relation.journal | Science Advances | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Sun, W.; Dacek, S. T.; Ong, S. P.; Hautier, G.; Jain, A.; Richards, W. D.; Gamst, A. C.; Persson, K. A.; Ceder, G. | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-8416-455X | |
dc.identifier.orcid | https://orcid.org/0000-0002-7737-1278 | |
dc.identifier.orcid | https://orcid.org/0000-0002-8126-5048 | |
mit.license | PUBLISHER_CC | en_US |
mit.metadata.status | Complete | |