MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiplicative Structures on Algebraic K-Theory

Author(s)
Barwick, Clark; Barwick, Clark Edward
Thumbnail
DownloadBarwick_Multiplicative structures.pdf (208.4Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The algebraic $K$-theory of Waldhausen $\infty$-categories is the functor corepresented by the unit object for a natural symmetric monoidal structure. We therefore regard it as the stable homotopy theory of homotopy theories. In particular, it respects all algebraic structures, and as a result, we obtain the Deligne Conjecture for this form of $K$-theory.
Date issued
2014-07
URI
http://hdl.handle.net/1721.1/109883
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Documenta Mathematica
Publisher
European Math Society
Citation
Barwick, Clark. "Multiplicative Structures on Algebraic K-Theory." Documenta Mathematica 20 (2015): 859--878.
Version: Final published version
ISSN
1431-0635
1431-0643

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.