dc.contributor.author | Barwick, Clark | |
dc.contributor.author | Barwick, Clark Edward | |
dc.date.accessioned | 2017-06-15T14:22:05Z | |
dc.date.available | 2017-06-15T14:22:05Z | |
dc.date.issued | 2014-07 | |
dc.date.submitted | 2013-04 | |
dc.identifier.issn | 1431-0635 | |
dc.identifier.issn | 1431-0643 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/109883 | |
dc.description.abstract | The algebraic $K$-theory of Waldhausen $\infty$-categories is the functor corepresented by the unit object for a natural symmetric monoidal structure. We therefore regard it as the stable homotopy theory of homotopy theories. In particular, it respects all algebraic structures, and as a result, we obtain the Deligne Conjecture for this form of $K$-theory. | en_US |
dc.language.iso | en_US | |
dc.publisher | European Math Society | en_US |
dc.relation.isversionof | http://www.math.uiuc.edu/documenta/vol-20/vol-20-eng.html | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Multiplicative Structures on Algebraic K-Theory | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Barwick, Clark. "Multiplicative Structures on Algebraic K-Theory." Documenta Mathematica 20 (2015): 859--878. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Barwick, Clark Edward | |
dc.relation.journal | Documenta Mathematica | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.orderedauthors | Barwick, Clark | en_US |
dspace.embargo.terms | N | en_US |
mit.license | OPEN_ACCESS_POLICY | en_US |