Show simple item record

dc.contributor.authorBarwick, Clark
dc.contributor.authorBarwick, Clark Edward
dc.date.accessioned2017-06-15T14:22:05Z
dc.date.available2017-06-15T14:22:05Z
dc.date.issued2014-07
dc.date.submitted2013-04
dc.identifier.issn1431-0635
dc.identifier.issn1431-0643
dc.identifier.urihttp://hdl.handle.net/1721.1/109883
dc.description.abstractThe algebraic $K$-theory of Waldhausen $\infty$-categories is the functor corepresented by the unit object for a natural symmetric monoidal structure. We therefore regard it as the stable homotopy theory of homotopy theories. In particular, it respects all algebraic structures, and as a result, we obtain the Deligne Conjecture for this form of $K$-theory.en_US
dc.language.isoen_US
dc.publisherEuropean Math Societyen_US
dc.relation.isversionofhttp://www.math.uiuc.edu/documenta/vol-20/vol-20-eng.htmlen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleMultiplicative Structures on Algebraic K-Theoryen_US
dc.typeArticleen_US
dc.identifier.citationBarwick, Clark. "Multiplicative Structures on Algebraic K-Theory." Documenta Mathematica 20 (2015): 859--878.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorBarwick, Clark Edward
dc.relation.journalDocumenta Mathematicaen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsBarwick, Clarken_US
dspace.embargo.termsNen_US
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record