MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Disorder enabled band structure engineering of a topological insulator surface

Author(s)
Xu, Yishuai; Chiu, Janet; Miao, Lin; He, Haowei; Kapitulnik, A.; Biswas, Rudro R.; Wray, L. Andrew; Alpichshev, Zhanybek; ... Show more Show less
Thumbnail
DownloadDisorder enabled band.pdf (757.8Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Three-dimensional topological insulators are bulk insulators with Z2 topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunnelling microscopy data to show that these resonance states have significance well beyond the localized regime usually associated with impurity bands. At native densities in the model Bi₂X₃ (X=Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport.
Date issued
2017-02
URI
http://hdl.handle.net/1721.1/110095
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Nature Communications
Publisher
Nature Publishing Group
Citation
Xu, Yishuai; Chiu, Janet; Miao, Lin; He, Haowei; Alpichshev, Zhanybek; Kapitulnik, A.; Biswas, Rudro R. and Wray, L. Andrew. “Disorder Enabled Band Structure Engineering of a Topological Insulator Surface.” Nature Communications 8 (February 2017): 14081 © 2017 The Author(s)
Version: Final published version
ISSN
2041-1723

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.