MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Highly tensile-strained Ge/InAlAs nanocomposites

Author(s)
Jung, Daehwan; Faucher, Joseph; Mukherjee, Samik; Ironside, Daniel J.; Cabral, Matthew; Sang, Xiahan; Lebeau, James; Bank, Seth R.; Buonassisi, Tonio; Moutanabbir, Oussama; Lee, Minjoo Larry; Akey, Austin J; ... Show more Show less
Thumbnail
DownloadHighly tensile-strained.pdf (1.982Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Self-assembled nanocomposites have been extensively investigated due to the novel properties that can emerge when multiple material phases are combined. Growth of epitaxial nanocomposites using lattice-mismatched constituents also enables strain-engineering, which can be used to further enhance material properties. Here, we report self-assembled growth of highly tensile-strained Ge/In[subscript 0.52]Al[subscript 0.48]As (InAlAs) nanocomposites by using spontaneous phase separation. Transmission electron microscopy shows a high density of single-crystalline germanium nanostructures coherently embedded in InAlAs without extended defects, and Raman spectroscopy reveals a 3.8% biaxial tensile strain in the germanium nanostructures. We also show that the strain in the germanium nanostructures can be tuned to 5.3% by altering the lattice constant of the matrix material, illustrating the versatility of epitaxial nanocomposites for strain engineering. Photoluminescence and electroluminescence results are then discussed to illustrate the potential for realizing devices based on this nanocomposite material.
Date issued
2017-01
URI
http://hdl.handle.net/1721.1/110156
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Nature Communications
Publisher
Nature Publishing Group
Citation
Jung, Daehwan; Faucher, Joseph; Mukherjee, Samik; Akey, Austin; Ironside, Daniel J.; Cabral, Matthew and Sang, Xiahan et al. “Highly Tensile-Strained Ge/InAlAs Nanocomposites.” Nature Communications 8 (January 2017): 14204 © 2017 The Author(s)
Version: Final published version
ISSN
2041-1723

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.