Show simple item record

dc.contributor.authorJung, Daehwan
dc.contributor.authorFaucher, Joseph
dc.contributor.authorMukherjee, Samik
dc.contributor.authorIronside, Daniel J.
dc.contributor.authorCabral, Matthew
dc.contributor.authorSang, Xiahan
dc.contributor.authorLebeau, James
dc.contributor.authorBank, Seth R.
dc.contributor.authorBuonassisi, Tonio
dc.contributor.authorMoutanabbir, Oussama
dc.contributor.authorLee, Minjoo Larry
dc.contributor.authorAkey, Austin J
dc.date.accessioned2017-06-21T20:08:52Z
dc.date.available2017-06-21T20:08:52Z
dc.date.issued2017-01
dc.date.submitted2016-02
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/110156
dc.description.abstractSelf-assembled nanocomposites have been extensively investigated due to the novel properties that can emerge when multiple material phases are combined. Growth of epitaxial nanocomposites using lattice-mismatched constituents also enables strain-engineering, which can be used to further enhance material properties. Here, we report self-assembled growth of highly tensile-strained Ge/In[subscript 0.52]Al[subscript 0.48]As (InAlAs) nanocomposites by using spontaneous phase separation. Transmission electron microscopy shows a high density of single-crystalline germanium nanostructures coherently embedded in InAlAs without extended defects, and Raman spectroscopy reveals a 3.8% biaxial tensile strain in the germanium nanostructures. We also show that the strain in the germanium nanostructures can be tuned to 5.3% by altering the lattice constant of the matrix material, illustrating the versatility of epitaxial nanocomposites for strain engineering. Photoluminescence and electroluminescence results are then discussed to illustrate the potential for realizing devices based on this nanocomposite material.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (DMR 1506371)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms14204en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleHighly tensile-strained Ge/InAlAs nanocompositesen_US
dc.typeArticleen_US
dc.identifier.citationJung, Daehwan; Faucher, Joseph; Mukherjee, Samik; Akey, Austin; Ironside, Daniel J.; Cabral, Matthew and Sang, Xiahan et al. “Highly Tensile-Strained Ge/InAlAs Nanocomposites.” Nature Communications 8 (January 2017): 14204 © 2017 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorAkey, Austin J
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsJung, Daehwan; Faucher, Joseph; Mukherjee, Samik; Akey, Austin; Ironside, Daniel J.; Cabral, Matthew; Sang, Xiahan; Lebeau, James; Bank, Seth R.; Buonassisi, Tonio; Moutanabbir, Oussama; Lee, Minjoo Larryen_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record