dc.contributor.author | Ahmed, Ali | |
dc.contributor.author | Cosse, Augustin M. | |
dc.contributor.author | Demanet, Laurent | |
dc.date.accessioned | 2017-06-26T17:53:44Z | |
dc.date.available | 2017-06-26T17:53:44Z | |
dc.date.issued | 2015-12 | |
dc.identifier.isbn | 978-1-4799-1963-5 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/110262 | |
dc.description.abstract | This note considers the problem of blind identification of a linear, time-invariant (LTI) system when the input signals are unknown, but belong to sufficiently diverse, known subspaces. This problem can be recast as the recovery of a rank-1 matrix, and is effectively relaxed using a semidefinite program (SDP). We show that exact recovery of both the unknown impulse response, and the unknown inputs, occurs when the following conditions are met: (1) the impulse response function is spread in the Fourier domain, and (2) the N input vectors belong to generic, known subspaces of dimension K in ℝL. Recent results in the well-understood area of low-rank recovery from underdetermined linear measurements can be adapted to show that exact recovery occurs with high probablility (on the genericity of the subspaces) provided that K,L, and N obey the information-theoretic scalings, namely L ≳ K and N ≳ 1 up to log factors. | en_US |
dc.description.sponsorship | Fonds national de la recherche scientifique (Belgium) | en_US |
dc.description.sponsorship | MIT International Science and Technology Initiatives | en_US |
dc.description.sponsorship | United States. Air Force. Office of Scientific Research | en_US |
dc.description.sponsorship | United States. Office of Naval Research | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) | en_US |
dc.description.sponsorship | Total SA | en_US |
dc.language.iso | en_US | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/CAMSAP.2015.7383722 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | MIT web domain | en_US |
dc.title | A convex approach to blind deconvolution with diverse inputs | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Ahmed, Ali, Augustin Cosse, and Laurent Demanet. “A Convex Approach to Blind Deconvolution with Diverse Inputs.” 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP) (December 2015). | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Ahmed, Ali | |
dc.contributor.mitauthor | Cosse, Augustin M. | |
dc.contributor.mitauthor | Demanet, Laurent | |
dc.relation.journal | 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP) | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.orderedauthors | Ahmed, Ali; Cosse, Augustin; Demanet, Laurent | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-5047-0604 | |
dc.identifier.orcid | https://orcid.org/0000-0001-7052-5097 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |