Show simple item record

dc.contributor.authorAhmed, Ali
dc.contributor.authorCosse, Augustin M.
dc.contributor.authorDemanet, Laurent
dc.date.accessioned2017-06-26T17:53:44Z
dc.date.available2017-06-26T17:53:44Z
dc.date.issued2015-12
dc.identifier.isbn978-1-4799-1963-5
dc.identifier.urihttp://hdl.handle.net/1721.1/110262
dc.description.abstractThis note considers the problem of blind identification of a linear, time-invariant (LTI) system when the input signals are unknown, but belong to sufficiently diverse, known subspaces. This problem can be recast as the recovery of a rank-1 matrix, and is effectively relaxed using a semidefinite program (SDP). We show that exact recovery of both the unknown impulse response, and the unknown inputs, occurs when the following conditions are met: (1) the impulse response function is spread in the Fourier domain, and (2) the N input vectors belong to generic, known subspaces of dimension K in ℝL. Recent results in the well-understood area of low-rank recovery from underdetermined linear measurements can be adapted to show that exact recovery occurs with high probablility (on the genericity of the subspaces) provided that K,L, and N obey the information-theoretic scalings, namely L ≳ K and N ≳ 1 up to log factors.en_US
dc.description.sponsorshipFonds national de la recherche scientifique (Belgium)en_US
dc.description.sponsorshipMIT International Science and Technology Initiativesen_US
dc.description.sponsorshipUnited States. Air Force. Office of Scientific Researchen_US
dc.description.sponsorshipUnited States. Office of Naval Researchen_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.description.sponsorshipTotal SAen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/CAMSAP.2015.7383722en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleA convex approach to blind deconvolution with diverse inputsen_US
dc.typeArticleen_US
dc.identifier.citationAhmed, Ali, Augustin Cosse, and Laurent Demanet. “A Convex Approach to Blind Deconvolution with Diverse Inputs.” 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP) (December 2015).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorAhmed, Ali
dc.contributor.mitauthorCosse, Augustin M.
dc.contributor.mitauthorDemanet, Laurent
dc.relation.journal2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsAhmed, Ali; Cosse, Augustin; Demanet, Laurenten_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5047-0604
dc.identifier.orcidhttps://orcid.org/0000-0001-7052-5097
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record