MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On some properties of quantum doubles of finite groups

Author(s)
Etingof, Pavel I
Thumbnail
DownloadEtingof_On some.pdf (104.3Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
We prove two results about quantum doubles of finite groups over the complex field. The first result is the integrality theorem for higher Frobenius–Schur indicators for wreath product groups S[subscript N]⋉A[superscript N], where A is a finite abelian group. A proof of this result for A=1 appears in a paper by Iovanov, Montgomery, and Mason. The second result is a lower bound for the largest possible number of irreducible representations of the quantum double of a finite group with at most n conjugacy classes. This answers a question asked by Eric Rowell.
Date issued
2013-07
URI
http://hdl.handle.net/1721.1/110407
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal of Algebra
Publisher
Elsevier
Citation
Etingof, Pavel. “On Some Properties of Quantum Doubles of Finite Groups.” Journal of Algebra 394 (November 2013): 1–6.
Version: Original manuscript
ISSN
0021-8693
1090-266X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.