Show simple item record

dc.contributor.authorEtingof, Pavel I
dc.date.accessioned2017-06-30T22:39:20Z
dc.date.available2017-06-30T22:39:20Z
dc.date.issued2013-07
dc.date.submitted2012-09
dc.identifier.issn0021-8693
dc.identifier.issn1090-266X
dc.identifier.urihttp://hdl.handle.net/1721.1/110407
dc.description.abstractWe prove two results about quantum doubles of finite groups over the complex field. The first result is the integrality theorem for higher Frobenius–Schur indicators for wreath product groups S[subscript N]⋉A[superscript N], where A is a finite abelian group. A proof of this result for A=1 appears in a paper by Iovanov, Montgomery, and Mason. The second result is a lower bound for the largest possible number of irreducible representations of the quantum double of a finite group with at most n conjugacy classes. This answers a question asked by Eric Rowell.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant DMS-1000113)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jalgebra.2013.07.004en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleOn some properties of quantum doubles of finite groupsen_US
dc.typeArticleen_US
dc.identifier.citationEtingof, Pavel. “On Some Properties of Quantum Doubles of Finite Groups.” Journal of Algebra 394 (November 2013): 1–6.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorEtingof, Pavel I
dc.relation.journalJournal of Algebraen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsEtingof, Pavelen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0710-1416
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record