A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics
Author(s)
Ortlepp, Thomas; Zhao, Qingyuan; McCaughan, Adam N; Dane, Andrew E.; Berggren, Karl K
DownloadBerggren_A nanocryotron.pdf (583.9Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a 'super-hybrid' system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.
Date issued
2017-03Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Research Laboratory of ElectronicsJournal
Superconductor Science and Technology
Publisher
IOP Publishing
Citation
Zhao, Qing-Yuan et al. “A Nanocryotron Comparator Can Connect Single-Flux-Quantum Circuits to Conventional Electronics.” Superconductor Science and Technology 30.4 (2017): 044002.
Version: Original manuscript
ISSN
0953-2048
1361-6668