Show simple item record

dc.contributor.authorOrtlepp, Thomas
dc.contributor.authorZhao, Qingyuan
dc.contributor.authorMcCaughan, Adam N
dc.contributor.authorDane, Andrew E.
dc.contributor.authorBerggren, Karl K
dc.date.accessioned2017-07-18T14:33:32Z
dc.date.available2017-07-18T14:33:32Z
dc.date.issued2017-03
dc.identifier.issn0953-2048
dc.identifier.issn1361-6668
dc.identifier.urihttp://hdl.handle.net/1721.1/110751
dc.description.abstractIntegration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a 'super-hybrid' system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.en_US
dc.description.sponsorshipUnited States. Intelligence Advanced Research Projects Activity (W911NF-14-C0089)en_US
dc.description.sponsorshipUnited States. Air Force. Office of Scientific Research (FA9550-14-1-0052)en_US
dc.language.isoen_US
dc.publisherIOP Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/1361-6668/aa5f33en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleA nanocryotron comparator can connect single-flux-quantum circuits to conventional electronicsen_US
dc.typeArticleen_US
dc.identifier.citationZhao, Qing-Yuan et al. “A Nanocryotron Comparator Can Connect Single-Flux-Quantum Circuits to Conventional Electronics.” Superconductor Science and Technology 30.4 (2017): 044002.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorZhao, Qingyuan
dc.contributor.mitauthorMcCaughan, Adam N
dc.contributor.mitauthorDane, Andrew E.
dc.contributor.mitauthorBerggren, Karl K
dc.relation.journalSuperconductor Science and Technologyen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsZhao, Qing-Yuan; McCaughan, Adam N; Dane, Andrew E; Berggren, Karl K; Ortlepp, Thomasen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6929-4391
dc.identifier.orcidhttps://orcid.org/0000-0002-8553-6474
dc.identifier.orcidhttps://orcid.org/0000-0003-2480-767X
dc.identifier.orcidhttps://orcid.org/0000-0001-7453-9031
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record