MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dissipation of Information in Channels With Input Constraints

Author(s)
Polyanskiy, Yury; Wu, Yihong
Thumbnail
DownloadPolyanskiy_Dissipation of information.pdf (602.8Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
One of the basic tenets in information theory, the data processing inequality states that the output divergence does not exceed the input divergence for any channel. For channels without input constraints, various estimates on the amount of such contraction are known, Dobrushin's coefficient for the total variation being perhaps the most well-known. This paper investigates channels with an average input cost constraint. It is found that, while the contraction coefficient typically equals one (no contraction), the information nevertheless dissipates. A certain nonlinear function, the Dobrushin curve of the channel, is proposed to quantify the amount of dissipation. Tools for evaluating the Dobrushin curve of additive-noise channels are developed based on coupling arguments. Some basic applications in stochastic control, uniqueness of Gibbs measures, and fundamental limits of noisy circuits are discussed. As an application, it is shown that, in the chain of n power-constrained relays and Gaussian channels, the end-to-end mutual information and maximal squared correlation decay as O(log log n/log n), which is in stark contrast with the exponential decay in chains of discrete channels. Similarly, the behavior of noisy circuits (composed of gates with bounded fan-in) and broadcasting of information on trees (of bounded degree) does not experience threshold behavior in the signal-to-noise ratio (SNR). Namely, unlike the case of discrete channels, the probability of bit error stays bounded away from 1/2 regardless of the SNR.
Date issued
2015-09
URI
http://hdl.handle.net/1721.1/111026
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
IEEE Transactions on Information Theory
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Polyanskiy, Yury and Wu, Yihong. “Dissipation of Information in Channels With Input Constraints.” IEEE Transactions on Information Theory 62, 1 (January 2016): 35–55 © 2016 Institute of Electrical and Electronics Engineers (IEEE)
Version: Original manuscript
ISSN
0018-9448
1557-9654

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.