Show simple item record

dc.contributor.authorPolyanskiy, Yury
dc.contributor.authorWu, Yihong
dc.date.accessioned2017-08-28T17:44:59Z
dc.date.available2017-08-28T17:44:59Z
dc.date.issued2015-09
dc.identifier.issn0018-9448
dc.identifier.issn1557-9654
dc.identifier.urihttp://hdl.handle.net/1721.1/111026
dc.description.abstractOne of the basic tenets in information theory, the data processing inequality states that the output divergence does not exceed the input divergence for any channel. For channels without input constraints, various estimates on the amount of such contraction are known, Dobrushin's coefficient for the total variation being perhaps the most well-known. This paper investigates channels with an average input cost constraint. It is found that, while the contraction coefficient typically equals one (no contraction), the information nevertheless dissipates. A certain nonlinear function, the Dobrushin curve of the channel, is proposed to quantify the amount of dissipation. Tools for evaluating the Dobrushin curve of additive-noise channels are developed based on coupling arguments. Some basic applications in stochastic control, uniqueness of Gibbs measures, and fundamental limits of noisy circuits are discussed. As an application, it is shown that, in the chain of n power-constrained relays and Gaussian channels, the end-to-end mutual information and maximal squared correlation decay as O(log log n/log n), which is in stark contrast with the exponential decay in chains of discrete channels. Similarly, the behavior of noisy circuits (composed of gates with bounded fan-in) and broadcasting of information on trees (of bounded degree) does not experience threshold behavior in the signal-to-noise ratio (SNR). Namely, unlike the case of discrete channels, the probability of bit error stays bounded away from 1/2 regardless of the SNR.en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/TIT.2015.2482978en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleDissipation of Information in Channels With Input Constraintsen_US
dc.typeArticleen_US
dc.identifier.citationPolyanskiy, Yury and Wu, Yihong. “Dissipation of Information in Channels With Input Constraints.” IEEE Transactions on Information Theory 62, 1 (January 2016): 35–55 © 2016 Institute of Electrical and Electronics Engineers (IEEE)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorPolyanskiy, Yury
dc.relation.journalIEEE Transactions on Information Theoryen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsPolyanskiy, Yury; Wu, Yihongen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2109-0979
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record