Show simple item record

dc.contributor.authorHosseinichimeh, Niyousha
dc.contributor.authorWittenborn, Andrea K.
dc.contributor.authorRahmandad, Hazhir
dc.contributor.authorJalali, Seyed Mohammad Javad
dc.date.accessioned2017-09-07T15:02:40Z
dc.date.available2017-09-07T15:02:40Z
dc.date.issued2017-01
dc.date.submitted2016-09
dc.identifier.issn0883-7066
dc.identifier.issn1099-1727
dc.identifier.urihttp://hdl.handle.net/1721.1/111143
dc.description.abstractThere is limited methodological guidance for estimating system dynamics (SD) models using datasets common to social sciences that include few data points over time for many units under analysis. Here, we introduce indirect inference, a simulation-based estimation method that can be applied to common datasets and is applicable to SD models that often include intractable likelihood functions. In this method, the model parameters are found by ensuring that simulated data from the model and available empirical data produce similar auxiliary statistics. The method requires few assumptions about the structure of the model and error-generating processes and thus can be used in a variety of applications. We demonstrate the method in estimating an SD model of depression and rumination using a panel dataset. The overall results suggest that indirect inference can extend the application of SD models to new topics and leverage common panel datasets to provide unique insights.en_US
dc.language.isoen_US
dc.publisherWiley Blackwellen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/sdr.1558en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Rahmandad via Shikha Sharmaen_US
dc.titleEstimating the parameters of system dynamics models using indirect inferenceen_US
dc.typeArticleen_US
dc.identifier.citationHosseinichimeh, Niyousha et al. “Estimating the Parameters of System Dynamics Models Using Indirect Inference.” System Dynamics Review 32, 2 (April 2016): 156–180 © 2016 System Dynamics Societyen_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorRahmandad, Hazhir
dc.contributor.mitauthorJalali, Seyed Mohammad Javad
dc.relation.journalSystem Dynamics Reviewen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHosseinichimeh, Niyousha; Rahmandad, Hazhir; Jalali, Mohammad S.; Wittenborn, Andrea K.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2784-9042
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record