Multi-modal robust inverse-consistent linear registration
Author(s)
Magnain, Caroline; Wachinger, Christian; Golland, Polina; Fischl, Bruce; Reuter, Klaus Martin
DownloadMulti-modal robust.pdf (4.330Mb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Registration performance can significantly deteriorate when image regions do not comply with model assumptions. Robust estimation improves registration accuracy by reducing or ignoring the contribution of voxels with large intensity differences, but existing approaches are limited to monomodal registration. In this work, we propose a robust and inverse-consistent technique for cross-modal, affine image registration. The algorithm is derived from a contextual framework of image registration. The key idea is to use a modality invariant representation of images based on local entropy estimation, and to incorporate a heteroskedastic noise model. This noise model allows us to draw the analogy to iteratively reweighted least squares estimation and to leverage existing weighting functions to account for differences in local information content in multimodal registration. Furthermore, we use the nonparametric windows density estimator to reliably calculate entropy of small image patches. Finally, we derive the Gauss–Newton update and show that it is equivalent to the efficient second-order minimization for the fully symmetric registration approach. We illustrate excellent performance of the proposed methods on datasets containing outliers for alignment of brain tumor, full head, and histology images.
Date issued
2015-03Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
Human Brain Mapping
Publisher
Wiley Blackwell
Citation
Wachinger, Christian, et al. “Multi-Modal Robust Inverse-Consistent Linear Registration.” Human Brain Mapping 36, 4 (December 2014): 1365–1380 © 2014 Wiley Periodicals
Version: Author's final manuscript
ISSN
1065-9471
1097-0193