Show simple item record

dc.contributor.authorMagnain, Caroline
dc.contributor.authorWachinger, Christian
dc.contributor.authorGolland, Polina
dc.contributor.authorFischl, Bruce
dc.contributor.authorReuter, Klaus Martin
dc.date.accessioned2017-09-19T15:07:08Z
dc.date.available2017-09-19T15:07:08Z
dc.date.issued2015-03
dc.date.submitted2014-10
dc.identifier.issn1065-9471
dc.identifier.issn1097-0193
dc.identifier.urihttp://hdl.handle.net/1721.1/111604
dc.description.abstractRegistration performance can significantly deteriorate when image regions do not comply with model assumptions. Robust estimation improves registration accuracy by reducing or ignoring the contribution of voxels with large intensity differences, but existing approaches are limited to monomodal registration. In this work, we propose a robust and inverse-consistent technique for cross-modal, affine image registration. The algorithm is derived from a contextual framework of image registration. The key idea is to use a modality invariant representation of images based on local entropy estimation, and to incorporate a heteroskedastic noise model. This noise model allows us to draw the analogy to iteratively reweighted least squares estimation and to leverage existing weighting functions to account for differences in local information content in multimodal registration. Furthermore, we use the nonparametric windows density estimator to reliably calculate entropy of small image patches. Finally, we derive the Gauss–Newton update and show that it is equivalent to the efficient second-order minimization for the fully symmetric registration approach. We illustrate excellent performance of the proposed methods on datasets containing outliers for alignment of brain tumor, full head, and histology images.en_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (Grant K25-CA181632-01A1)en_US
dc.description.sponsorshipNational Center for Research Resources (U.S.) (Grant P41-RR13218)en_US
dc.description.sponsorshipNational Center for Research Resources (U.S.) (Grant P41-RR14075)en_US
dc.description.sponsorshipNational Center for Research Resources (U.S.) (Grant U24-RR021382)en_US
dc.description.sponsorshipNational Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant R01EB006758)en_US
dc.description.sponsorshipNational Alliance for Medical Image Computing (U.S.) (Grant U54-EB005149)en_US
dc.description.sponsorshipNational Institute on Aging (Grant AG022381)en_US
dc.description.sponsorshipNational Institute on Aging (Grant 5R01AG008122-22)en_US
dc.description.sponsorshipNational Center for Complementary and Alternative Medicine (U.S.) (Grant RC1 AT005728-01)en_US
dc.description.sponsorshipNational Institute of Neurological Diseases and Stroke (U.S.) (Grant R01 NS052585-01)en_US
dc.description.sponsorshipNational Institute of Neurological Diseases and Stroke (U.S.) (Grant 1R21NS072652-01)en_US
dc.description.sponsorshipNational Institute of Neurological Diseases and Stroke (U.S.) (Grant 1R01NS070963)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 5U01-MH093765)en_US
dc.language.isoen_US
dc.publisherWiley Blackwellen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/hbm.22707en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleMulti-modal robust inverse-consistent linear registrationen_US
dc.typeArticleen_US
dc.identifier.citationWachinger, Christian, et al. “Multi-Modal Robust Inverse-Consistent Linear Registration.” Human Brain Mapping 36, 4 (December 2014): 1365–1380 © 2014 Wiley Periodicalsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorWachinger, Christian
dc.contributor.mitauthorGolland, Polina
dc.contributor.mitauthorFischl, Bruce
dc.contributor.mitauthorReuter, Klaus Martin
dc.relation.journalHuman Brain Mappingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWachinger, Christian; Golland, Polina; Magnain, Caroline; Fischl, Bruce; Reuter, Martinen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3652-1874
dc.identifier.orcidhttps://orcid.org/0000-0003-2516-731X
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record