Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy
Author(s)
Litzius, Kai; Krüger, Benjamin; Bassirian, Pedram; Richter, Kornel; Sato, Koji; Tretiakov, Oleg A.; Förster, Johannes; Reeve, Robert M.; Weigand, Markus; Bykova, Iuliia; Stoll, Hermann; Schütz, Gisela; Kläui, Mathias; Lemesh, Ivan; Caretta, Lucas Marcelo; Buettner, Felix; Beach, Geoffrey Stephen; ... Show more Show less
DownloadBeach_Skyrmion hall.pdf (1.987Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Magnetic skyrmions are promising candidates for future spintronic applications such as skyrmion racetrack memories and logic devices. They exhibit exotic and complex dynamics governed by topology and are less influenced by defects, such as edge roughness, than conventionally used domain walls. In particular, their non-zero topological charge leads to a predicted 'skyrmion Hall effect', in which current-driven skyrmions acquire a transverse velocity component analogous to charged particles in the conventional Hall effect. Here, we use nanoscale pump-probe imaging to reveal the real-time dynamics of skyrmions driven by current-induced spin-orbit torques. We find that skyrmions move at a well-defined angle Θ SkH that can exceed 30° with respect to the current flow, but in contrast to conventional theoretical expectations, Θ SkH increases linearly with velocity up to at least 100 ms -1 . We qualitatively explain our observation based on internal mode excitations in combination with a field-like spin-orbit torque, showing that one must go beyond the usual rigid skyrmion description to understand the dynamics.
Date issued
2016-12Department
Massachusetts Institute of Technology. Department of Materials Science and EngineeringJournal
Nature Physics
Publisher
Nature Publishing Group
Citation
Litzius, Kai et al. “Skyrmion Hall Effect Revealed by Direct Time-Resolved X-Ray Microscopy.” Nature Physics 13, 2 (December 2016): 170–175 © 2017 Macmillan Publishers Limited
Version: Original manuscript
ISSN
1745-2473
1745-2481