Show simple item record

dc.contributor.authorLitzius, Kai
dc.contributor.authorKrüger, Benjamin
dc.contributor.authorBassirian, Pedram
dc.contributor.authorRichter, Kornel
dc.contributor.authorSato, Koji
dc.contributor.authorTretiakov, Oleg A.
dc.contributor.authorFörster, Johannes
dc.contributor.authorReeve, Robert M.
dc.contributor.authorWeigand, Markus
dc.contributor.authorBykova, Iuliia
dc.contributor.authorStoll, Hermann
dc.contributor.authorSchütz, Gisela
dc.contributor.authorKläui, Mathias
dc.contributor.authorLemesh, Ivan
dc.contributor.authorCaretta, Lucas Marcelo
dc.contributor.authorBuettner, Felix
dc.contributor.authorBeach, Geoffrey Stephen
dc.date.accessioned2017-09-29T19:19:11Z
dc.date.available2017-09-29T19:19:11Z
dc.date.issued2016-12
dc.date.submitted2016-05
dc.identifier.issn1745-2473
dc.identifier.issn1745-2481
dc.identifier.urihttp://hdl.handle.net/1721.1/111662
dc.description.abstractMagnetic skyrmions are promising candidates for future spintronic applications such as skyrmion racetrack memories and logic devices. They exhibit exotic and complex dynamics governed by topology and are less influenced by defects, such as edge roughness, than conventionally used domain walls. In particular, their non-zero topological charge leads to a predicted 'skyrmion Hall effect', in which current-driven skyrmions acquire a transverse velocity component analogous to charged particles in the conventional Hall effect. Here, we use nanoscale pump-probe imaging to reveal the real-time dynamics of skyrmions driven by current-induced spin-orbit torques. We find that skyrmions move at a well-defined angle Θ SkH that can exceed 30° with respect to the current flow, but in contrast to conventional theoretical expectations, Θ SkH increases linearly with velocity up to at least 100 ms -1 . We qualitatively explain our observation based on internal mode excitations in combination with a field-like spin-orbit torque, showing that one must go beyond the usual rigid skyrmion description to understand the dynamics.en_US
dc.description.sponsorshipUnited States. Department of Energy. Office of Basic Energy Sciences (Award DE-SC0012371)en_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/NPHYS4000en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcearXiven_US
dc.titleSkyrmion Hall effect revealed by direct time-resolved X-ray microscopyen_US
dc.typeArticleen_US
dc.identifier.citationLitzius, Kai et al. “Skyrmion Hall Effect Revealed by Direct Time-Resolved X-Ray Microscopy.” Nature Physics 13, 2 (December 2016): 170–175 © 2017 Macmillan Publishers Limiteden_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.mitauthorLemesh, Ivan
dc.contributor.mitauthorCaretta, Lucas Marcelo
dc.contributor.mitauthorBuettner, Felix
dc.contributor.mitauthorBeach, Geoffrey Stephen
dc.relation.journalNature Physicsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2017-09-29T13:59:43Z
dspace.orderedauthorsLitzius, Kai; Lemesh, Ivan; Krüger, Benjamin; Bassirian, Pedram; Caretta, Lucas; Richter, Kornel; Büttner, Felix; Sato, Koji; Tretiakov, Oleg A.; Förster, Johannes; Reeve, Robert M.; Weigand, Markus; Bykova, Iuliia; Stoll, Hermann; Schütz, Gisela; Beach, Geoffrey S. D.; Kläui, Mathiasen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7229-7980
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record