MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Catalyst Self-Assembly for Scalable Patterning of Sub 10 nm Ultrahigh Aspect Ratio Nanopores in Silicon

Author(s)
Smith, Brendan Derek; Patil, Jatin J; Ferralis, Nicola; Grossman, Jeffrey C.
Thumbnail
DownloadGrossman_Catalyst self-assembly.pdf (9.940Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Nanoporous silicon (NPSi) has received significant attention for its potential to contribute to a large number of applications, but has not yet been extensively implemented because of the inability of current state-of-the-art nanofabrication techniques to achieve sufficiently small pore size, high aspect ratio, and process scalability. In this work we describe the fabrication of NPSi via a modified metal-assisted chemical etching (MACE) process in which silica-shell gold nanoparticle (SiO₂-AuNP) monolayers self-assemble from solution onto a silicon substrate. Exposure to the MACE etchant solution results in the rapid consumption of the SiO₂ spacer shell, leaving well-spaced arrays of bare AuNPs on the substrate surface. Particles then begin to catalyze the etching of nanopore arrays without interruption, resulting in the formation of highly anisotropic individual pores. The excellent directionality of pore formation is thought to be promoted by the homogeneous interparticle spacing of the gold core nanocatalysts, which allow for even hole injection and subsequent etching along preferred crystallographic orientations. Electron microscopy and image analysis confirm the ability of the developed technique to produce micrometer-scale arrays of sub 10 nm nanopores with narrow size distributions and aspect ratios of over 100:1. By introducing a scalable process for obtaining high aspect ratio pores in a novel size regime, this work opens the door to implementation of NPSi in numerous devices and applications. (Graph Presented).
Date issued
2016-03
URI
http://hdl.handle.net/1721.1/111825
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
ACS Applied Materials & Interfaces
Publisher
American Chemical Society (ACS)
Citation
Smith, Brendan D. et al. “Catalyst Self-Assembly for Scalable Patterning of Sub 10 nm Ultrahigh Aspect Ratio Nanopores in Silicon.” ACS Applied Materials & Interfaces 8, 12 (March 2016): 8043–8049 © 2016 American Chemical Society
Version: Author's final manuscript
ISSN
1944-8244
1944-8252

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.