MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Substrate-blind photonic integration based on high-index glass materials

Author(s)
Lin, Hongtao; Li, Lan; Zou, Yi; Du, Qingyang; Ogbuu, Okechukwu; Smith, Charmayne; Koontz, Erick; Musgraves, David; Richardson, Kathleen; Hu, Juejun; ... Show more Show less
Thumbnail
DownloadHu_Substrate-blind.pdf (4.734Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Conventional photonic integration technologies are inevitably substrate-dependent, as different substrate platforms stipulate vastly different device fabrication methods and processing compatibility requirements. Here we capitalize on the unique monolithic integration capacity of composition-engineered non-silicate glass materials (amorphous chalcogenides and transition metal oxides) to enable multifunctional, multi-layer photonic integration on virtually any technically important substrate platforms. We show that high-index glass film deposition and device fabrication can be performed at low temperatures ( < 250 °C) without compromising their low loss characteristics, and is thus fully compatible with monolithic integration on a broad range of substrates including semiconductors, plastics, textiles, and metals. Application of the technology is highlighted through three examples: demonstration of high-performance mid-IR photonic sensors on fluoride crystals, direct fabrication of photonic structures on graphene, and 3-D photonic integration on flexible plastic substrates.
Date issued
2014-11
URI
http://hdl.handle.net/1721.1/112199
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Proceedings of SPIE--the Society of Photo-Optical Instrumentation Engineers
Publisher
SPIE
Citation
Lin, Hongtao et al. “Substrate-Blind Photonic Integration Based on High-Index Glass Materials.” Proceedings of SPIE, Nanophotonics and Micro/Nano Optics II, October 2014, Beijing, China, edited by Zhiping Zhou and Kazumi Wada, SPIE, November 2014. © 2014 SPIE
Version: Final published version
ISSN
0277-786X
1996-756X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.