Show simple item record

dc.contributor.authorLin, Hongtao
dc.contributor.authorLi, Lan
dc.contributor.authorZou, Yi
dc.contributor.authorDu, Qingyang
dc.contributor.authorOgbuu, Okechukwu
dc.contributor.authorSmith, Charmayne
dc.contributor.authorKoontz, Erick
dc.contributor.authorMusgraves, David
dc.contributor.authorRichardson, Kathleen
dc.contributor.authorHu, Juejun
dc.date.accessioned2017-11-16T16:23:52Z
dc.date.available2017-11-16T16:23:52Z
dc.date.issued2014-11
dc.identifier.issn0277-786X
dc.identifier.issn1996-756X
dc.identifier.urihttp://hdl.handle.net/1721.1/112199
dc.description.abstractConventional photonic integration technologies are inevitably substrate-dependent, as different substrate platforms stipulate vastly different device fabrication methods and processing compatibility requirements. Here we capitalize on the unique monolithic integration capacity of composition-engineered non-silicate glass materials (amorphous chalcogenides and transition metal oxides) to enable multifunctional, multi-layer photonic integration on virtually any technically important substrate platforms. We show that high-index glass film deposition and device fabrication can be performed at low temperatures ( < 250 °C) without compromising their low loss characteristics, and is thus fully compatible with monolithic integration on a broad range of substrates including semiconductors, plastics, textiles, and metals. Application of the technology is highlighted through three examples: demonstration of high-performance mid-IR photonic sensors on fluoride crystals, direct fabrication of photonic structures on graphene, and 3-D photonic integration on flexible plastic substrates.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award 1200406)en_US
dc.publisherSPIEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1117/12.2073972en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSPIEen_US
dc.titleSubstrate-blind photonic integration based on high-index glass materialsen_US
dc.typeArticleen_US
dc.identifier.citationLin, Hongtao et al. “Substrate-Blind Photonic Integration Based on High-Index Glass Materials.” Proceedings of SPIE, Nanophotonics and Micro/Nano Optics II, October 2014, Beijing, China, edited by Zhiping Zhou and Kazumi Wada, SPIE, November 2014. © 2014 SPIEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.mitauthorDu, Qingyang
dc.contributor.mitauthorHu, Juejun
dc.relation.journalProceedings of SPIE--the Society of Photo-Optical Instrumentation Engineersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2017-10-11T17:56:21Z
dspace.orderedauthorsLin, Hongtao; Li, Lan; Zou, Yi; Du, Qingyang; Ogbuu, Okechukwu; Smith, Charmayne; Koontz, Erick; Musgraves, David; Richardson, Kathleen; Hu, Juejunen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1424-356X
dc.identifier.orcidhttps://orcid.org/0000-0002-7233-3918
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record