Unimodality of partitions with distinct parts inside Ferrers shapes
Author(s)
Zanello, Fabrizio; Stanley, Richard P
DownloadStanley_Unimodality of partitions.pdf (157.4Kb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
We investigate the rank-generating function F[subscript λ] of the poset of partitions contained inside a given shifted Ferrers shape λ. When λ has four parts, we show that F [subscript λ] is unimodal when λ=〈n, n-1, n-2, n-3〉, for any n≥4, and that unimodality fails for the doubly-indexed, infinite family of partitions of the form λ=〈n, n-t, n-2t, n-3t〉, for any given t≥2 and n large enough with respect to t.When λ has b≤3 parts, we show that our rank-generating functions F[subscript λ] are all unimodal. However, the situation remains mostly obscure for b≥5. In general, the type of results that we obtain present some remarkable similarities with those of the 1990 paper of D. Stanton, who considered the case of partitions inside ordinary (straight) Ferrers shapes. Along the way, we also determine some interesting q-analogs of the binomial coefficients, which in certain instances we conjecture to be unimodal. We state several other conjectures throughout this note, in the hopes to stimulate further work in this area. In particular, one of these will attempt to place into a much broader context the unimodality of the posets M(n) of staircase partitions, for which determining a combinatorial proof remains an outstanding open problem.
Date issued
2015-04Department
Massachusetts Institute of Technology. Department of MathematicsJournal
European Journal of Combinatorics
Publisher
Elsevier
Citation
Stanley, Richard P., and Zanello, Fabrizio. “Unimodality of Partitions with Distinct Parts Inside Ferrers Shapes.” European Journal of Combinatorics 49 (October 2015): 194–202 © 2015 Elsevier
Version: Author's final manuscript
ISSN
0195-6698
1095-9971