MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unimodality of partitions with distinct parts inside Ferrers shapes

Author(s)
Zanello, Fabrizio; Stanley, Richard P
Thumbnail
DownloadStanley_Unimodality of partitions.pdf (157.4Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
We investigate the rank-generating function F[subscript λ] of the poset of partitions contained inside a given shifted Ferrers shape λ. When λ has four parts, we show that F [subscript λ] is unimodal when λ=〈n, n-1, n-2, n-3〉, for any n≥4, and that unimodality fails for the doubly-indexed, infinite family of partitions of the form λ=〈n, n-t, n-2t, n-3t〉, for any given t≥2 and n large enough with respect to t.When λ has b≤3 parts, we show that our rank-generating functions F[subscript λ] are all unimodal. However, the situation remains mostly obscure for b≥5. In general, the type of results that we obtain present some remarkable similarities with those of the 1990 paper of D. Stanton, who considered the case of partitions inside ordinary (straight) Ferrers shapes. Along the way, we also determine some interesting q-analogs of the binomial coefficients, which in certain instances we conjecture to be unimodal. We state several other conjectures throughout this note, in the hopes to stimulate further work in this area. In particular, one of these will attempt to place into a much broader context the unimodality of the posets M(n) of staircase partitions, for which determining a combinatorial proof remains an outstanding open problem.
Date issued
2015-04
URI
http://hdl.handle.net/1721.1/112204
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
European Journal of Combinatorics
Publisher
Elsevier
Citation
Stanley, Richard P., and Zanello, Fabrizio. “Unimodality of Partitions with Distinct Parts Inside Ferrers Shapes.” European Journal of Combinatorics 49 (October 2015): 194–202 © 2015 Elsevier
Version: Author's final manuscript
ISSN
0195-6698
1095-9971

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.